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Abstract
Background: Gene expression measurements during the development of the fly Drosophila
melanogaster are routinely used to find functional modules of temporally co-expressed genes.
Complimentary large data sets of in situ RNA hybridization images for different stages of the fly
embryo elucidate the spatial expression patterns.

Results: Using a semi-supervised approach, constrained clustering with mixture models, we can
find clusters of genes exhibiting spatio-temporal similarities in expression, or syn-expression. The
temporal gene expression measurements are taken as primary data for which pairwise constraints
are computed in an automated fashion from raw in situ images without the need for manual
annotation. We investigate the influence of these pairwise constraints in the clustering and discuss
the biological relevance of our results.

Conclusion: Spatial information contributes to a detailed, biological meaningful analysis of
temporal gene expression data. Semi-supervised learning provides a flexible, robust and efficient
framework for integrating data sources of differing quality and abundance.

Background
The study of embryonic development of the fly Drosophila
melanogaster revealed many genes important to the devel-
opment of other metazoans, including humans. Knowing
the precise localization and time of gene expression is cru-
cial in the elucidation of these dynamic cellular mecha-
nisms. The advent of microarray technology has led to the
generation of data sets measuring transcription or gene

expression levels over the complete embryonic develop-
ment of the fly [1-4]. Under the assumption that genes
with similar expression patterns have similar properties,
the concept of co-expressed genes can be used to generate
hypotheses about function, pathways and role of proteins
that can be taken to the laboratory for further investiga-
tion. This reasoning, guilt-by-association, firmly installed
the use of clustering algorithms in the analysis of data
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from DNA microarrays [5], as a cluster of genes ideally
represent functional modules. For example, proteins
expressed from co-regulated gene sets have been shown to
physically interact [6,7].

Time-course data collected during the cell-cycle, develop-
ment and differentiation, or in response to external factors
required novel methods to cope with the temporal
dependencies inherent to gene expression time-courses
and with data quality issues; see [8] for a recent review,
which identified mixture models to be preferable. Hence,
mixture models and model-based clustering found wide-
spread use in gene expression time-course analysis [9-18].
The robustness of mixture models and their flexibility to
capture dependencies in the data by use of Splines [9,10]
or Hidden Markov Models (HMM) [14-16] as component
models are the main reasons for the success of this tech-
nique in gene expression analysis. While the performance
of some methods is quite impressive, the dimensionality
of typical data sets – ten-thousands of genes, less than
twenty time-points – implies that apparent co-expression
of genes can be observed due to chance and that, hence,
the value of information transfer between co-regulated
genes is limited.

Semi-supervised learning and Heterogeneous Data
One way to strengthen the concept of co-expression for
clustering algorithms is to augment the primary data, gene
expression time-courses in our application, with second-
ary, external data in order to yield biologically more plau-
sible solutions; recall that most clustering algorithms are
only guaranteed to converge locally. The framework of
choice which fits in nicely with the iterative knowledge
acquisition process in biology is semi-supervised learning
[19], partly clustering (unlabeled learning) and partly
classification (labeled learning); sometimes this is also
referred to as constrained clustering [20-22] (see Fig. 1).
One of the first applications in bioinformatics [14] shows,
that less than 2% labels can drastically improve clustering
quality. On real data, high-quality labels which indicate
whether, for example, two genes are part of the same func-
tional module can be obtained from the literature. Use of
abundant annotations from the Gene Ontology (GO)
[23] that are often used to validate clusterings [24] pro-
vide surprisingly little improvement, partly due to a mis-
match between the semantics of GO and similarity of
expression. In this work we use a formulation proposed in
[20] that can be combined with mixture model estima-
tion.

Spatial expression patterns
Another important aspect of gene expression, its precise
localization, has been studied in great detail in the fly.
While the prime motivation for these sensitive experi-
ments was to understand the role of individual genes in

organ development, we can incorporate the spatial expres-
sion patterns for the generation of functional hypotheses.

Genes that share the same temporal-spatial expression
patterns are more likely to form a functional module. If
they are synchronously co-expressed in one tissue, or in
multiple tissues we speak of syn-expression [25] and take in
particular the latter case as a strong sign of functional sim-
ilarity. The spatial expression patterns can be determined
with in situ experiments where an mRNA-specific stain is
produced by mRNA-binding oligonucleotides and a suit-
able dye [26]. Further processing, imaging and image
analysis produces either 2D or 3D images of spatial pat-
terns of gene expression; large-scale data sets are available
for fly development and for other model organisms. Even
though Drosophila embryos are morphologically simple,
the image analysis is quite involved as in-situ images are
taken of many different subjects with large fluctuations in
shape. In addition, the staining intensity has higher, gene-
specific error rates compared to DNA microarrays.

Prior work
Tomancak et al. [4] performed a large scale study of gene
expression in the fly embryos by in situ RNA hybridiza-
tions. The images were manually curated and annotated
using a controlled vocabulary – ImaGO – following the
example of the Gene Ontology [23]. The final result was a
hierarchical clustering of genes based on the manual
annotations; the gene expression time-courses were not
included in the analysis. Further work concentrated on
mining the image database for genes with a spatial expres-
sion pattern similar to a query [27,28] and on the extrac-
tion of features deemed peculiar and noteworthy [28], for
example by clustering images based on an eigenvector
based representation [29]. Recent smaller scale studies

Semi-supervised clusteringFigure 1
Semi-supervised clustering. The effectiveness of pairwise 
constraints is shown by contrasting with the unsupervised 
setting (left). Assuming a two-dimensional space, the addition 
of positive pairwise constraints, depicted as red edges, and 
negative constraints depicted as blue edges (right), can indi-
cate existence of two or more clusters and the cluster 
boundaries. Edge width corresponds to constraint magni-
tude.
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investigated pattern formation in Drosophila based on
3D in situ images [30,31] for a small number of genes.

Our contribution
We obtain clusters of syn-expressed genes during the
development of Drosophila. We propose to automatically
infer positive constraints (spatial co-expression) and neg-
ative constraints (expression in distinct tissues) from the
in situ image data and use them in a mixture model for the
complementary, higher quality, DNA microarray time-
course data as shown in Fig. 2.

Results and discussion
Clustering of gene expression data using mixture of 
multivariate Gaussians
We cluster gene expression data using a mixture of multi-
variate Gaussians with diagonal covariance matrix and
choose the number of components to be 28 as suggested
by the Bayesian Information criterion (BIC) (see Section
Evaluation, [32]).

The gene expression time-courses cover the period from 1
to 12 hours of the embryo development and expression
values are given as log-ratios (See Section Data for
details). Overall, our clustering results reflect two typical
classes (see Fig. 3), the maternal and zygotic transcripts
[33]. Maternal genes appear strongly expressed in the first
three hours, usually followed by a decline. The clusters 18
to 28 clearly follow a maternal pattern. These transcripts
are deposited in the oocyte; typically the embryo does not
transcribe these genes in early development. They are
responsible for the determination of body axes and the
first phases of the cell cycle and other functions. The
period from 2 to 3 hours coincides with the cellularization
and the formation of three germ layers following gastrula-
tion, when primary tissues start to develop [34]. Con-
versely, genes actively transcribed in the embryo are not
expressed in the early time points and expression rises to
significant levels only in later stages (3 hours and later).
Many of these genes are important to organogenesis. Tran-
scripts in the clusters 1 to 4 and 8 to 11 follow the pattern
of embryonic activation unambiguously. The functional
association can be observed in the overrepresented Gene
Ontology terms (see Supplementary Material [35]). For
other clusters, shapes cannot be matched to such simple
schemes. Several have maximal expression in the midst of
embryonic development. Note that the clusters that show
varying levels are less populated than the ones in the
maternal and in the activated class.

Using images as Partial Information
We use semi-supervised learning to obtain better solu-
tions for the maximum-likelihood estimation by con-
straining the mixture estimation with pairwise constraints
between genes. The principle behind this is shown in Fig.

1. We choose a very simple approach to compare the
images, which gives competitive results compared to a
computationally more complex previous approach [36],
combined with judicious filtering. The constraints are
derived by measuring correlation between in situ images
of pairs of genes. Pairs of genes, whose images are highly
correlated in three or more time periods, are positively
constrained, see Fig. 2 for example. Negative constraints
are derived similarly (see Section Constraints from in situ
data for details). These constraints will, ideally, differenti-
ate between genes showing co-expression due to chance
and causal temporal co-expression also supported by spa-
tial co-expression (syn-expression).

As a previous study has shown [24], noisy constraints will
be detrimental to the clustering quality; consequently few
high quality constraints are preferable compared to many
constraints of medium or low quality. The correlation
coefficients of all pairwise image comparisons showed a
bi-modal distribution (not shown) which allowed to
select the strongest correlations with little ambiguity. Thus
we arrived at a set of constraints derived from strongly
positive and negative correlations.

Changes in the biological annotations
To investigate the effects of the constraints in the cluster-
ing, we compare the results of the mixture of Gaussians
(MoG) against the mixture of Gaussians with pairwise
constraints (cMoG) (see Fig. 4 for clusters). As explained
in Section Evaluation, we choose to use positive con-
straints, which are supported in at least three develop-
mental stages, as they yield good recall of in situ image
annotations.

As a sanity check, we inspect if cMoG is successful in con-
straining the clustering by counting the number of con-
straints, as derived from the images, met in the final
solutions. With MoG, a sizeable proportion of the con-
straints are already satisfied (656 out of 1756 pairwise
positive constraints), as the expression data partially
agrees with the constraints as syn-expressed genes are co-
expressed. With cMoG, 1127 out of 1756 pairwise positive
constraints are met, nearly twice the number for MoG.
This demonstrates that cMoG benefits from the con-
straints in deriving the clusters.

Another helpful analysis is the comparison of enrichment
of in situ image annotations (ImaGO), as described in Sec-
tion Evaluation (see [35] for complete results). We display
in Fig. 5 a scatter plot with the p-values of all ImaGO
terms, which had an enrichment p-value below 0.01 in
one either cMoG or MoG clusters. In summary, cMoG has
a higher enrichment in 67 out of 112 relevant ImaGO
terms. A binomial test for testing the event of having 67
successes in 112 trials is rejected with a p-value of 0.0232,
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Obtaining constraints from imagesFigure 2
Obtaining constraints from images. We depict the time course expression (top) and registered in situ images (middle) of 
genes twi, G12177, Ef2 and RhoGAP71E, which indicate their temporal and spatial expression patterns. From left to right, the 
embryo images are categorized into the time periods 0–3 h, 3–6 h, 6–9 h, 9–12 h, 12–15 h and 15–18 h. The microarray 
expression displays a similar expression pattern with maximal expression after 3 hours for all genes but weakly diverging at 
later time points. The in situ images indicates that twi and CG12177 have syn-expression at time periods 3–6, 6–9 and 9–12; 
while Ef2 and RhoGAP71E at periods 0–3, 3–6, 6–9, 9–12 and 15–18. At the bottom, we display how positive constraints are 
derived from in situ hybridization patterns. A heat-map displays the correlation coefficients between all pairs of in situ images of 
the corresponding time period (red values indicate positive correlations). After thresholding the correlation matrices, a con-
straint matrix for each time period is obtained. For example, constraint matrices from periods 3–6 and 6–9 indicates syn-
expression of pairs (twi, CG1217) and (Ef2, RhoGAP71E), while the constraint matrix from period 9–12 also indicate that 
(CG1217, RhoGAP71E) are syn-expressed. The matrices are combined into one constraining genes that display syn-expression 
in at least three periods, as indicated in the matrix at the bottom.
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Clustering result: Mixture of GaussiansFigure 3
Clustering result: Mixture of Gaussians. The similarity of overall patterns in the clustering result of the MoG is explained 
by the developmental stages investigated. The major phenomena are depletion of maternal mRNA (maternal genes) and start 
of the embryonic transcriptional machinery during embryogenesis at time point 3 hours (zigotically expressed genes). In the 
clusters with zigotically expressed genes, we observe two main periods of activation: 3–4 hours for cluster U1 to U5, and 7–8 
h for clusters U8 to U11. In the clusters with maternal genes, we observe under-expression of genes at several time periods: 
3–4 h in clusters U21 to U28; 4–5 h for clusters U17 to U20; 6–7 h for cluster U16; 7–8 h for clusters U12 and U13; and 9–10 
h for cluster U15.
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Clustering result: Constrained Mixture of GaussiansFigure 4
Clustering result: Constrained Mixture of Gaussians. The 28 clusters from cMoG show tightly co-regulated patterns 
and a refinement of the clustering solution of MoG. In the clusters with zygotically expressed genes, we also observe two main 
periods of activation: 3–4 h for clusters c1 to c5, and 7–8 h hours for clusters c9 to c12. In the clusters with maternal genes, 
we observe under-expression of genes at several time periods: 3–4 h for clusters C18, C20 to C28; 4–5 h for clusters C15, 
C16, C19; 6–7 h for clusters C8, C13, C14 and C19; and 7–8 h hours for cluster C7.
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which indicates that the counts of ImaGO terms with
higher enrichment for cMoG is significantly higher than
expected by chance. Furthermore, if we take only ImaGO
terms with a higher enrichment gain for one of the meth-
ods into account (points distant from the diagonal line in
Fig. 5), the advantage of cMoG is even greater (see Fig. 6
and Fig. 7). This indicates that even without direct use of
the annotation information from ImaGO, cMoG has a
greater sensitivity in grouping syn-expressed genes.

Overall, the individual clusters of MoG and cMoG did not
differ much; the cMoG clusters were better spread and the
number of clusters with few genes assigned is smaller.
One way to quantify the distinctions is to calculate the
sensitivity and specificity of cMoG taking the results from
MoG as the ground truth. These values are respectively

0.53 and 0.97, which indicates that cMoG has a tendency
to subdivide clusters from MoG.

Functional annotations in constrained clusters
Even for a well characterized genome like Drosophila the
high dimensionality in the annotation data provides only
limited information for any single gene. Analyzing the
obtained clusters is also challenging due to the necessity
to identify the corresponding functional modules in the
unconstrained and the constrained sets and by the
requirement to show improvements rather than simple
correct functional assignments. In the following, we will
refer to the ith cluster from cMoG and MoG as Ci and Ui
respectively. For some cases, the mapping from clusters of
cMoG to MoG is simply one to one (e.g., C1 to U1, C5 to
U5, C11 to U11 and C12 to U10). Most other clusters
show larger differences. We focus our functional analysis

ImaGO term enrichmentFigure 5
ImaGO term enrichment. We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis) in a scatter plot. We 
use -log(p)-values, thus larger values indicate a larger degree of enrichment. Points above the red line indicate a higher enrich-
ment in cMoG clusters, and values below in MoG clusters. The distance from the diagonal is proportional to the increase in 
enrichment. For 67 out of 112 ImaGO terms we observe a higher degree of enrichment in cMoG clusters.
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on clusters with zygoticly expressed transcripts (i.e., C1 to
C4 and C9 to C12 in Fig. 4).

Cluster C2 represents a good example of the changes
resulting from the introduction of constraints. It contains
most of the genes from U2 (135 genes) and 16 genes from
U3. Out of the seven genes, which show similar expres-
sion patterns and have co-location constraints (CG6930,
E2f, Iswi, neur, Set, RhoGAP771e, trx), only four (G6930,
E2f, Iswi, trx) are found in the U2. All these genes have
ImaGO annotations related to ventral nerve cord primor-
dium and related terms (see Fig. 8 top for mean in situ
images of these genes and [35] for complete ImaGO
enrichment results). Related genes that have no con-
straints but are annotated as part of the embryonic central
nervous system are included in C2 (CG7372, CG14722, fzy).
The analysis of GO term enrichment indicates terms such
as nervous system development (p-value of 3.38e-23) and sys-
tem development (p-value of 9.54e-21) (similar term
enrichment is found for cluster U2). It should be noted
that the clusters U2 and U3 are similar overall and mainly
differ in the average time when genes reach the plateau of
maximal expression.

An example for larger changes is cluster C3, which is
mainly composed of genes originally found in U3 (101

genes) and U8 (63 genes). C3 was constrained by three
genes (rhea, Rsf1 and vig) of which rhea and vig come from
cluster U8 and Rsf1 from U3 (see Fig. 8 middle for mean
in situ images of C3). This cluster presents smaller p-values
for ImaGO terms related to muscle primordium (genes
CG5522, CG9253, Dg, Mef2, betaTub60D, htl, mbc, vig)
than U3 and U8. Furthermore, GO term analysis reveals
that this cluster shows enrichment for nervous system devel-
opment (p-value of 1.33e-11) and axis specification (9.31e-
05). For the latter term, seven genes are originally from U3
(Dfd, Lis-1, sti, Syx1A, sqd, Ras85Dm, tup) and five from U8
(baz, Dg, pnt, Rac2, tok), demonstrating that the changes
introduced increased the number of syn-expressed genes
within C3.

The cluster C9 represents only a subset of U8 (59 out of
the 126 genes) but has no genes with constraints. It con-
sists of genes from U8 that are not constrained to genes
from C3 (see paragraph above). Still, it is enriched in the
ImaGO term embryonic central nervous system and related
terms (genes HLHmbeta, NetB, Oli, lin-28, scrt, sd, tap, uzip
and zfh2). The cluster is also enriched in the terms organ
(p-value 2.66e-05) and ectoderm development (p-values
8.54e-05), which were significantly enriched in U8. In
other words, this cluster is a specialization of U8, whose
genes are specific to organ development.

C10 is formed by the addition of most genes in the U4
cluster (39 genes) to U10 (118 genes). There are seven
genes constraining this cluster (CG6751, CG18446,
CG13912, CG10924, CG8745, dm, Klp61F) (see Fig. 8 bot-
tom). ImaGO term enrichment relates this cluster to yolk
nuclei and amnioserosa. It is also in enriched in the GO
term nervous system development (p-value 1.06e-08), all of
which were insignificant in the U10 cluster.

It is also worthwhile to look at those few cases where MoG
performed better. From Fig. 5, two ImaGO terms with
higher enrichment increase in MoG are maternal and pro-
cephalic ectoderm anlage in statu nascendi. The first term was
enriched in cluster C22 and U21, where MoG had some
more genes related to the term maternal (34 genes in MoG
compared to 31 genes in cMoG). For the latter ImaGO
term, clusters U2 and C2 were both enriched, and there
was only one annotated gene in U2 not in C2. As none of
these annotated groups of genes had pairwise constraints,
we could not detect any direct effect of the constrained
clustering on these results.

The refined clusters improve the generation of testable
hypotheses for the role of uncharacterized genes. Overall,
we observe improvement in annotation of genes related
to development of the fly, in particular with respect to the
ImaGO annotations, which increases our confidence in
the delineation of syn-expressed functional modules.

Proportion of ImaGO term enrichmentFigure 6
Proportion of ImaGO term enrichment. For each 
threshold τ (x-axis), we depict the proportion of ImaGO 
terms for which we observer a smaller p-value in cMoG than 
in MoG (y-axis). The threshold τ discards ImaGO terms, 
where the difference in the log of the p-value of cMoG and 
MoG in smaller then τ. As can be observed, the proportion is 
higher then 0.5 for all τ values, which indicates an advantage 
of cMoG. Furthermore, the proportion has an increasing ten-
dency for higher τ values.
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Conclusion
The generation of functional hypotheses by integrating
different information sources is a key problem posed by
the massive amounts of high-throughput data that is gen-
erated in todays laboratories. Often, analyses are limited
to few information sources and the integration only starts
after many processing steps, frequently including manual
annotation, and is more often than not performed manu-
ally.

Here we have shown, for a limited setting, how to auto-
matically fuse temporal and spatial gene expression pat-
terns by semi-supervised clustering. Our results show that

the clusters we find are biologically meaningful and that
we can detect clusters of syn-expressed genes which are
worthwhile targets for further investigation, either with
classical biological analysis or as the input for methods
inferring networks. Our implementation is reasonably
simple and computationally efficient and the semi-super-
vised approach provides a flexible framework for adapting
results to questions biologists are interested in. The main
advantage of the semi-supervised approach over joint
models and other approaches is that it can cope easily
with the variations in data abundance from different
sources. Gene expression measured with DNA microar-
rays is often available for ten-thousands of genes and

ImaGO term enrichment for τ = 0.3Figure 7
ImaGO term enrichment for τ = 0.3. We compare ImaGO term enrichment of MoG (x-axis) and cMoG (y-axis) in a scat-
ter plot for τ = 0.3. We use -log(p)-values, thus larger values indicate a larger degree of enrichment. Points above the red line 
indicate a higher enrichment in cMoG clusters, and values below in MoG clusters. Green points between the dotted lines rep-
resent ImaGO terms not satisfying the threshold τ = 0.3, where τ indicates the distance from the diagonal line to the dotted 
lines. We clearly observe a higher proportion of non-filtered ImaGO terms (points in blue) above the diagonal line (32 ImaGO 
terms) against (12 ImaGO terms) below the diagonal. A binomial test is rejected with a p-value of 0.0018, which indicates an 
significant advantage of cMoG.
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many time-points, in situ hybridization will typically only
cover a fraction of those, as will high quality protein inter-
action or protein structure data. Our results show a small
but very clear improvement, despite the complexity of the
problem, namely the restriction to embryonic stages to
few data points, and the usual caveats concerning DNA
microarrays and in situ images of gene expression. The

open questions are manifold and concern both the biol-
ogy and the computer science. How can we refine biolog-
ical questions to yield more meaningful answers? How
can one mine image data effectively, and does a represen-
tation in 2D suffice or is using the third dimension a
necessity? The best combination of several, potentially
conflicting, information sources to arrive at one set of

Averaged in situ images C2, C3 and C10Figure 8
Averaged in situ images C2, C3 and C10. Averaged in situ images of genes constrained in Cluster C2 (top), C3 (middle) 
and C10 (bottom) allow to visually assess homogeneity of spatial distribution. From left to right, we have embryos at hours 0–
3, 3–6, 6–9, 9–12, 12–15 and 15–18. Top images represents dorsal views, bottom images lateral views; not all time periods 
have images in both views.

(a) C2 dorsal

(b) C2 lateral

(c) C3 dorsal

(d) C3 lateral

(e) C10 dorsal

(f) C10 lateral
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constraints is an equally challenging problem. Can one
incorporate the per-stage constraints into the learning for
time-course data? We have demonstrated that our meth-
odology is a promising candidate for the delineation of
functional modules using different data types and our
results show that further investigations are likely to bear
fruit.

Methods
Mixture models
A mixture model [32] is a stochastic model where obser-
vations are drawn from one of several component densi-
ties. More formally, it is a convex combination of density
functions,

Here,  denotes the observed data (or the gene

expression time-courses), Θ = (α1,...,αK, θ1,...,θK) the non-

negative component weights or priors αk, i = 1,...,K, which

add to unity and P[xi|θk] are the K component densities

parameterized by θk, k = 1,...,K, for example θk = (μk, Σk)

for multivariate Gaussians. The Expectation-Maximiza-
tion (EM) algorithm [32] can be used to find parameters

Θ* maximizing (1) at least locally. The EM is necessary as
(1) is essentially the incomplete data likelihood function;
missing are the values of the indicator variables

, yi ∈ {1,...,K}, which designate the component

yi which generated the observation xi. If Y is known, the

maximization is straight-forward, and the core idea of EM
is to iteratively use expected values for Y based on current

parameters Θt in the estimation of Θt+1. A nice introduc-

tion to the EM-algorithm is given in [37].

Partially supervised learning

We assume additional soft constraints for observations in
the form of pairwise positive (link) respectively negative

(do not link) constraints  respectively  ∈ [0, 1],

which reflect the degree of linking for each pairs of obser-

vations xi, xj, 1 ≤ i <j ≤ N. We use a formulation proposed

by Lange et al. [20] which we summarize here; for further
applications of the method we refer to [21,24].

Let W+ = { } respectively W- be symmetric N × N matri-

ces. The EM-algorithm can be easily modified to respect
the constraints W+, W-. In the t-th E-step the posterior dis-

tribution P[Y|X, Θt] over hidden labels yi is computed,

where Θt is the last estimate of the parameters. By Bayes'

rule we have

where Z is a normalizing constant. Loosely speaking, the
constraints are incorporated by choosing the prior distri-
bution P[Y|Θt] such that neither constraints W+, W- nor
prior probabilities αk in Θt are violated while maximizing
its entropy. In other words, we choose the distribution,
which obeys the maximum entropy principle and which is
called the Gibbs distribution. See [20,21] for full details.
Hence

where Z is the normalizing constant. The Lagrange param-

eters λ+ and λ- weigh the penalty of positive and negative
constraints violations and hence control the importance

of the constraints. If λ+ = λ- = 0 then the estimation maxi-

mized the likelihood, whereas for increasing λ+, λ- the
result is more strongly influenced by the constraints. As
computing (2) is usually infeasible we again follow [20]
and resort to a mean field approximation. Note, finally, that
when there is no overlap in the constraints – more exactly,

, and λ+ = λ- ~ ∞ – we obtain hard constraints

[16,38].

Data
We use the data-set described in [39] which is available
from the BDGP database [40].

Image collection
Embryos of Canton were collected and aged to produce
embryos 0–3, 3–6, 6–9, 9–12, 12–15 and 15–18 hours
old. The in situ reactions were based on a cDNA library of
2,721 clones; in the end images were collected for 1,388
genes. The difference is caused either by a failure of in situ
reactions or by a lack of tissue-specific expression. Images
were taken with a dissecting microscope in different focal
planes and different orientations.

Time-courses
For twelve consecutive one-hour time windows of embry-
ogenesis mRNA levels were measured using the Affymetrix
GeneChip Drosophila Genome array targeting about
14,000 genes and processed with the standard Affymetrix
tool suite. We used the median from three biological rep-
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licates. As the embryos were not synchronized, the man-
ual inspection of the morphology was used to establish a
common time-scale with the time-course data. Expression
values were transformed to log-ratios by using time point
1 hour as reference. We removed genes not exhibiting at
least a two-fold change, which leaves us with 2684 genes.

In situ image processing
The majority of in situ hybridization images in the BDGP
database [40] contain the projection of exactly one cen-
tered embryo. However, there is a noticeable portion of
images with multiple touching embryos. To exploit as
much data as possible, the goal of image preprocessing is
to locate and extract exactly one complete embryo from
each image, even for touching embryos.

To distinguish between embryo and non-embryo pixels
we estimate the local variance of grey level intensities for
each pixel in a 3 × 3 neighborhood, following [27]. It suf-
fices to apply a fixed predefined threshold for segmenta-
tion using variance estimates because of a homogeneous
background in contrast to the embryo. To eliminate erro-
neous embryo regions a sequence of morphological clos-
ing and opening using a circular mask of radius 4 is
applied [41]. Subsequently the largest connected compo-
nent is extracted. The resulting region may be the projec-
tion of a single complete or partial embryo or the
projection of a set of multiple touching embryos. To dis-
tinguish these different cases we apply a series of simple
filters based on ellipticity, compactness and area of the
extracted region. For regions of multiple touching
embryos we introduce a procedure to separate the individ-
uals and to extract a single complete high quality embryo.
Further details are given in [36].

The final step of image processing is to register the
embryos extracted to a standardized orientation and size
to allow for comparison of different expression patterns.
The embryo is rotated to align horizontally to the princi-
pal axis. Subsequently the bounding box is scaled to a
standard size. Fig. 9 shows the steps of the image process-
ing pipeline for one example image.

Constraints from in situ images
To compare in situ hybridization patterns between a pair
of registered embryo images, we compute the Pearson cor-
relation as a co-location index, as proposed in [36]. This
index takes both the spatial distribution and the strength
of hybridization into account. Despite its simplicity, it
had similar performance, in a querying scenario, com-
pared to more complex methods such as the one pro-
posed in [27]. More formally, let X and Y describe the
pixel intensities of two equal sized and registered embryo
images, the Pearson correlation is calculated as

The 18 developmental stages of the embryo are divided
into six periods (0–3, 3–6, 6–9, 9–12, 12–15 and 15–18).
Not all time points were sampled for each gene and for
some periods and genes, in situ images were taken in a
dorsal and/or lateral views. There is however no annota-
tion of the orientation of the embryo; automatic registra-
tion being a difficult task for this problem. Hence, for each
pair of images, we estimate the correlation between all
possible orientations and take the maximum value. For a
pair of genes and a developmental period, we repeat the
above procedure for all pairs of images and again keep the
maximum value. By an inspection of the distribution of
the correlation coefficient, we select a value k of gene pairs
to constrain. In other words, the gene pairs (gi, gj) display-

ing the kth highest correlations are positively constrained

(  = 1). Similarly, the gene pairs (gi, gj) displaying the

kth lowest correlations are negatively constrained (  =

1). As we are interested in high quality constraints, we use
conservative thresholds, which select only a small percent-
age of gene pairs to be constrained (less then 2% of genes
with in situ images). As a last step, we need to combine the
image constraints from the distinct developmental peri-
ods. Again, we use a conservative strategy, requiring that a
pair of genes is only constrained if we observe a correla-
tion coefficient exceeding our threshold in at least three
respectively four developmental periods; cf. Fig. 2 for an
example. With support of at least three periods, there are
1,756 positive constraints within 170 genes and 2,544
negative constraints within 360 genes. With support of at
least four stages, there are 270 positive constraints within
66 genes and 640 negative constraints within 151 genes.

Evaluation
We use multivariate Gaussians with diagonal covariance
matrices [32] as our components in all mixture estima-
tions, as we are mainly interested in comparing our semi-
supervised approach with the unsupervised scenario. For
a given mixture parameterization, we initialize models
randomly, repeat the estimation 15 times and choose the
one with maximum likelihood. We estimate the optimal
number of clusters with the Bayesian Information Criteria
(BIC) in the unsupervised setting, which indicates 28 clus-
ters. We use this number for all other runs described
below. All data sets and a tool implementing the method
are available in our Supplementary Material Web page at
http://algorithmics.molgen.mpg.de/Supplements/Insitu,

CC X Y
Cov X Y

Var X Var Y
( , )

( , )
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Image processing pipelineFigure 9
Image processing pipeline. The image pipeline combines registration, morphological operations and further processing 
steps to automatically process raw images, even if they include multiple touching embryos. Shown here is the image insitu8784, 
gene CG5353.
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where we also display plots of the clusters, lists of genes,
images constraining the clusters, GO term enrichment (as
provided by GoStat [42]) and ImaGO term enrichment.

ImaGO term enrichment
A controlled vocabulary, which follows the Gene Ontol-
ogy [23] standard, was used to annotate gene expression
patterns [39]. All images deposited in BDGP are anno-
tated to at least one of these terms. We can, as usual with
Gene Ontology [42], use a statistical tests to list ImaGO
terms, which are overrepresented in a cluster. Given a set
of n genes, we count the number c of genes in a given clus-
ter, the number t of genes annotated with a given ImaGO
term and the number h of genes that are both in the clus-
ter and annotated with the ImaGO term. The resulting p-
value, calculated with the Fisher Exact Test [43] is then
used to assess the significance of the count h, given n, c
and t. The Fisher Exact Test assumes that the data comes
from a Hyper-geometric distribution, and it is equivalent
to the Hyper-geometric test. Lower p-values indicate an
enrichment in ImaGO terms and, consequently, better
results.

This strategy is useful for evaluating the biological quality
of a single cluster, but gives no global assessment for com-
paring the results given by two clustering solutions. One
heuristic way to perform such an analysis is to compare
the p-values obtained in two solutions [44]. A superior
method has a larger number of ImaGO terms with lower
p-values.

Selection of constraints and parameters
We evaluate the use of constraints shared by either three
or four developmental periods, the use of positive con-
straints and both positive and negative constraints, and
four choices of the parameter λ+ = λ- (0.5, 1.0, 1.5 and
2.0). There is no theory guiding choices of λ+ and λ-, nei-
ther is there a definitive "gold standard" data set to opti-

mize them. Hence, motivated by [24], we made the
simple choice to give positive and negative constraints
equal weight, which should have some impact on the
clustering result, but not dominate it.

As shown in Table 1, all constraint combinations lead to
an increase in ImaGO term enrichment, except the use of
positive and negative constraints from three stages. Fur-
thermore, values of λ around 1 lead to an improvement,
while higher values tend to deteriorate results. Thus, we
choose to use positive constraints derived from three
developmental periods and a constraint weight of λ+ = 1.0
in agreement with [24]
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