
Discrete Applied Mathematics 155 (2007) 840–856
www.elsevier.com/locate/dam

Integer linear programming approaches
for non-unique probe selection

Gunnar W. Klaua,b,∗, Sven Rahmannc, Alexander Schliepd, Martin Vingrond,
Knut Reinerte

aMathematics in Life Sciences, Free University Berlin, Arnimallee 3, D-14195 Berlin, Germany
bDFG Research Center MATHEON “Mathematics for Key Technologies”, Berlin, Germany

cAlgorithms and Statistics for Systems Biology, Genome Informatics, Technische Fakultät, Bielefeld University, D-33594 Bielefeld, Germany
dComputational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestr. 73, D-14195 Berlin, Germany

eAlgorithmic Bioinformatics, Free University Berlin, Takustr. 9, D-14195 Berlin, Germany

Received 17 July 2004; received in revised form 17 January 2005; accepted 24 September 2005
Available online 31 October 2006

Abstract

In addition to their prevalent use for analyzing gene expression, DNA microarrays are an efficient tool for biological, medical,
and industrial applications because of their ability to assess the presence or absence of biological agents, the targets, in a sample.
Given a collection of genetic sequences of targets one faces the challenge of finding short oligonucleotides, the probes, which allow
detection of targets in a sample by hybridization experiments. The experiments are conducted using either unique or non-unique
probes, and the problem at hand is to compute a minimal design, i.e., a minimal set of probes that allows to infer the targets in the
sample from the hybridization results. If we allow to test for more than one target in the sample, the design of the probe set becomes
difficult in the case of non-unique probes.

Building upon previous work on group testing for microarrays we describe the first approach to select a minimal probe set for the
case of non-unique probes in the presence of a small number of multiple targets in the sample. The approach is based on an integer
linear programming formulation and a branch-and-cut algorithm. Our implementation significantly reduces the number of probes
needed while preserving the decoding capabilities of existing approaches.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Integer linear programming; Microarray; Probe; Oligonucleotide; Design; Group testing

1. Introduction

Microarrays are a widely used tool because they provide a cost-efficient way to determine levels of specified RNA or
DNA molecules in a biological sample. Typically, one measures the amount of gene expression in a cell by observing
hybridization of mRNA to different probes on a microarray, each probe targeting a specific gene. A distinct and likewise
important application, arising, for example, in medicine, environmental sciences, industrial quality control, or biothreat

∗ Corresponding author. Mathematics in Life Sciences, Free University Berlin, Arnimallee 3, D-14195 Berlin, Germany.
E-mail address: gunnar@mi.fu-berlin.de (G.W. Klau).
URL: http://www.inf.fu-berlin.de/inst/ag-bio.

0166-218X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.09.021

http://www.elsevier.com/locate/dam
mailto:gunnar@mi.fu-berlin.de
http://www.inf.fu-berlin.de/inst/ag-bio

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 841

Table 1
Target-probe incidence matrix H

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1 1 1 1 0 1 1 0 0 0
t2 1 0 1 1 0 0 1 1 0
t3 0 1 1 1 0 1 1 0 1
t4 0 1 0 0 1 0 1 1 1

reduction, is the identification of biological agents in a sample. This wide range of applications leads to the same
methodological problem: to determine the presence or absence of targets—such as viruses or bacteria—in a biological
sample.

Our work focuses on oligonucleotide arrays. To illustrate the general approach let us assume we would like to
identify virus subtypes in a sample. If we test whether a number of probes, i.e., short oligonucleotides of size 8–32,
hybridize to the genome of the virus, we can infer presence or absence of the virus if the hybridization pattern is unique
among all viruses possibly contained in the sample. This problem is readily extended to the case of several viruses
simultaneously present and the objective of identifying those which are indeed contained in thesample.

In the case of unique probes, neglecting errors, this extension is trivial, since we will exactly observe the union
of those probes that hybridize to the viruses in the set and there is one unique set of targets for every observable
hybridization pattern. However, finding unique probes is often difficult, for example in the case of closely related virus
subtypes. One way around this fundamental problem is a method which can make use of non-unique probes: probes
which hybridize to more than one target.

Assume we are given the target-probe incidence matrix H = (Hij) as shown in Table 1: we set Hij = 1 if and only
if target ti hybridizes to probe pj . In a hybridization experiment with a sample that contains several targets, we will
observe hybridization signals at all probes incident to any target present in the sample, i.e., we observe the logical OR
of the row vectors corresponding to targets in the sample. If the probe set is not carefully chosen, this can easily lead
to situations where we cannot resolve the hybridization pattern observed in the experiment.

We illustrate the problem using the example in Table 1. We have four targets t1, . . . , t4 and nine probes p1, . . . , p9.
Assume first that we know that the sample contains at most one target. The goal is to choose a suitable design matrix D,
i.e., to select a minimal set of probes that allows us to infer the presence of a single target. In our example it is sufficient
to use probes p1, p2, and p3 for detecting the presence of a single target (e.g., for target t2 probes p1 and p3 hybridize,
while p2 does not). Minimizing the number of probes is a reasonable objective function, since it is proportional to
the cost of the experiment. In the example, {p1, p2, p3} is an optimal choice, since we need at least three targets to
distinguish between the five events “no target present”, “t1 present”, . . . , “t4 present”: The smaller choice {p4, p8}
cannot distinguish between the empty target set and the set {t1}.

Now assume that target t2 and target t3 are simultaneously present in the sample (but none of the remaining targets
is). In this case all three probes p1, p2, and p3 hybridize. This case cannot be distinguished from the case that only
t1 is present. As a remedy, we could take all the probes p1, . . . , p9. It can easily be checked that for each subset of
two targets the hybridization pattern is different from every other subset of cardinality one or two. Taking all probes
is, however, not necessary. With p1, p4, p5, and p9, all target sets of cardinality �2 can be distinguished, with the
exception of {t1, t3} versus {t2, t4}. Adding probe p8 to the design allows to make this last distinction, too.

Generally it is clear that taking all probes results in the best possible separation between all subsets. However, for a
small number of targets in the sample, say up to three or four, we can often achieve the same quality with a (substantially)
smaller number of probes.

In addition to the difficulty illustrated above, the problem is aggravated by the presence of errors. Usually the false
positive error rate f1 (i.e., the experiment reports a hybridization although there should be none) and the false negative
rate f0 (i.e., the experiment should report a hybridization but does not) are up to 5%. As a remedy it is customary to
build some redundancy into the design; e.g., we demand that two targets are separated by more than one probe and that
each target hybridizes to more than one probe.

It is not trivial to compute the target-probe incidence matrix H in the beginning. Among the potentially large set of
possible non-unique probes, only a fraction satisfies the typical restrictions used for oligonucleotide probe selection.

842 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

For instance, all probes should exhibit the same hybridization affinity, expressed as the Gibbs free energy �G of the
probe-target duplex, at a given temperature and salt concentration. The probes should neither be self complementary,
nor should they cross-hybridize. Other constraints are possible (see for example [14]).

The three steps of (1) computing the target-probe incidence matrix, (2) computing a suitable design matrix D, and
(3) decoding the result were recently addressed by [13]. In this work we address the second step, the computation
of the design matrix D given the target-probe incidence matrix H, and use for the first and third step the methods
proposed in the above mentioned paper, adopting its notation to a large extent. We emphasize, however, that our results
do not depend on our choice of method for computing the target-probe incidence matrix H [7] nor on any of the typical
constraints on oligonucleotide probes such as their length. While we strive to minimize the number of probes, we do
not want to lose the ability to decode experimental results, i.e., the ability to infer the correct target set, even in the
presence of errors. We show that the minimal designs we obtain have good decoding capabilities.

A similar problem has been considered by [11], where the authors have also used integer linear programming to
determine a minimum cardinality set of substrings that distinguishes between all singleton target sets. In contrast to
their work, we focus on a preselection of probes that satisfy the physical and chemical constraints discussed above,
which are impossible to formulate by linear inequalities. In addition, we are able to distinguish not only between
single targets but also the whole groups of targets. This is a much more complex problem: if we knew in advance that
exactly (at most) one target is present, there are only m (m + 1) different outcomes to consider, m being the number of
targets. Without this knowledge, there are 2m possible outcomes. Furthermore, we present a more elaborate probabilistic
decoding framework, explicitly modeling false positive and false negative hybridization errors.

This paper is the full version of the extended abstract presented at ISMB’04 [4]. It contains proofs of theorems, an
additional, more elegant ILP formulation, and new computational experiments that settle some questions raised in the
extended abstract.

1.1. Problem definition

We denote the m target sequences by ti (i ∈ {1, . . . , m}) and the n candidate probes by pj (j ∈ {1, . . . , n}), and
define the target-probe incidence matrix H = (Hij) by Hij := 1 if target ti hybridizes to probe candidate pj , and
Hij := 0 otherwise. The design matrix D is the sub-matrix of H that contains those columns corresponding to probes
included in the final design; it will be characterized by a binary vector x = (x1, . . . , xn), where xj = 1 if and only if pj

is selected for the final design.
The set of probes hybridizing to target ti , i.e., the index set of nonzero entries in row i of the incidence matrix H,

is denoted by P(i). Similarly, T (j) denotes the set of target sequences probe pj hybridizes to, or equivalently, the
index set of nonzero entries in column j of H. If S is a set of target sequences, we say that a probe p hybridizes to
the set S when p hybridizes to at least one target in S. By P(S) we denote the set of all probes hybridizing to S, i.e.,
P(S) := ⋃

ti∈SP (i).

Definition 1 (d-separability). Let S and T be two different target sets. Probe p separates S and T if p ∈ P(S)�P(T),
i.e., if p hybridizes to either S or T, but not to both (� denotes symmetric set difference). Target sets S and T are
d-separable if at least d probes separate them, i.e., if |P(S)�P(T)|�d.

Consider the example in Table 1: the sets S = {t1, t2} and T = {t3, t4} are 2-separable (the separating probes are p1
and p9).

Formally, the probe selection problem is stated as follows.

Problem 2 (Probe selection problem). Given an incidence matrix H and two parameters d ∈ N and c ∈ N, select a
minimal set of probes, such that all targets are covered by at least d probes and such that all different subsets of targets
S and T up to cardinality c are d-separable using only selected probes.

Note that asking for a target coverage of d explicitly is in fact unnecessary, because one of the sets S, T can
be the empty set. Then the general separability constraint includes the coverage constraint. In practice, one might
prefer to use different values dcov > dsep for coverage and separability, respectively. Our methods allow this change
easily.

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 843

Lemma 3. The probe selection problem is NP-hard.

Proof. This is a straightforward reduction from the set cover problem that appears as a special case (d = 1 and
c = 0). �

Schliep et al. [13] describe a fast heuristic that allows the computation of a good design, and we review it shortly:
the following procedure greedily computes a design that guarantees d-separability for all pairs of targets if possible
and thus produces a feasible solution for the probe selection problem with cardinality parameter c = 1. Additionally,
it randomly generates a fixed number of target subsets of larger cardinality and d-separates them. Note that due to the
greedy nature of this algorithm, the chosen design is not guaranteed to be minimal.

(1) Add probes until every target is covered by at least d probes, i.e., every singleton target set {ti} is d-separated from
the empty set, by calling SEPARATE({ti}, {}, d) for all i = 1, . . . , m.

(2) Ensure that all pairs of single targets are separated by at least d probes by calling SEPARATE({ti}, {ti′ }, d) for all
1� i < i′ �m.

(3) Randomly pick a number N of additional pairs of target sets S and T and d-separate each pair by calling
SEPARATE(S, T , d). The parameter N can be chosen according to the time available to refine the design.

The procedure SEPARATE(S, T , d) ensures d-separation of S and T, or produces a warning if the candidate set allows only
d ′-separation for some d ′ < d (see Algorithm 1).

Algorithm 1: Greedy design computation

SEPARATE(S, T , d);
Add probes to the current partial design D to d-separate S and T;
Let C := P(S)�P(T);
Partition C into C = CD ∪ C′, where CD := C ∩ D, and C′ contains the separating probes not yet included in D;
if |CD|�d then

| return; (nothing to do)
end
if |C′| < (d − |CD|) then

| warn “Can only (|CD| + |C′|)-separate S and T”;
end
Add the d − |CD| highest-quality probes from C′ to D;

This approach is simple and very practical. However, since a particular microarray is designed only once, the time
spent to compute the design is less important than the size and quality of the design, that is, the number of probes it
contains (the fewer the better), and its decoding capabilities in the presence of errors.

In order to reduce the number of probes in the design, we propose an approach based on Integer Linear Programming
(ILP) that guarantees d-separability for each pair of targets as well as each pair of small target groups using the minimal
number of probes.

2. Integer linear programming formulations

This section contains ILP formulations that characterize feasible solutions for the probe selection problem. Our first
formulation, presented in Section 2.1, makes use of adding virtual probes to overcome problems with unseparable target
sets and is also the one we use in our computational experiments. In Section 2.2 we present a more elegant formulation
that directly solves the probe selection problem.

2.1. Virtual probe formulation

We start by formulating the problem as a variation of a set cover ILP. Let xj (1�j �n) be a set of binary variables
with xj = 1 if probe pj is chosen and xj = 0 otherwise. Then the probe selection problem for c = 1 can be formulated

844 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

as the following integer linear program which we refer to as the master ILP:

min
n∑

j=1

xj (master ILP)

s.t.
n∑

j=1

Hijxj �d, 1� i�m,

n∑
j=1

|Hij − Hkj | · xj �d, 1� i < k�m,

xj ∈ {0, 1}, 1�j �n.

Note that it can be easily checked whether it is possible to d-separate all pairs of targets. If not, then the set of feasible
solutions of the above ILP is empty. As a remedy, we consider a variation of the problem: we add a sufficiently large
number l := m ·d of unique virtual probes that are only chosen if it is not possible to do the separation with the original
set of candidate probes. We ensure this by setting the objective function coefficients of the virtual probes to a large
number M, i.e., we change the objective in the master ILP to

min
n∑

j=1

xj + M

n+l∑
k=n+1

xj , (1)

and replace n by n + l in the constraints of the above ILP. Having added the virtual probes we can now deal with input
matrices H that do not allow d-separability.1

The master ILP guarantees the pairwise separation of all single targets, similar to the greedy heuristic. Solving the
ILP, however, leads to the minimal number of probes necessary to do this. In the experimental section we show that the
difference in the number of probes can be substantial.

We do not only want to guarantee d-separability between pairs of targets but between pairs of small target groups.
Given a set of targets S (group), we denote by �S the vector that results from applying the logical OR to the rows
in S. We call this vector the signature of S. It represents the probe set P(S) as a binary vector and is formally
defined by

�S
j = max

i∈S
Hij (j = 1, . . . , n).

Note that S and T are d-separable if and only if the Hamming distance between �S and �T is at least d. Our goal is to
guarantee a sufficiently large Hamming distance for the signatures of all pairs S �= T with |S|, |T |�c. We call these
additional requirements the group constraints.

Enumerating all pairs of small subsets and adding the corresponding group constraints to the ILP is not feasible, as
already noted by Schliep et al. [13]. Hence we propose a cutting plane approach: whenever we have a feasible solution
to the master ILP, we check for violated group inequalities and add them only if needed. This leads to a branch-and-cut
algorithm (see, e.g., [15]), a linear programming-based branch and bound technique for solving mixed integer linear
programs by dynamically adding violated inequalities (cuts).

2.1.1. Finding violated group inequalities
The main idea of our approach is to iteratively construct a most violated group constraint by looking at our current

selection of probes. More precisely, let x∗ be a solution vector of the master ILP and let X = {j | x∗
j = 1}, i.e., the

index set of the currently chosen probes. Further, for a target set S, let �S |X denote the restriction of �S to the columns
in X. For brevity, we set M := {1, . . . , m} (target indices) and N := {1, . . . , n} (probe indices).

1 Note that, instead of modifying the objective function by making the virtual probes expensive, we could also attack this problem in a two-step
process: first, minimize the number of virtual probes, and then add the corresponding variables to the master ILP and solve it using the original
objective function.

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 845

Fig. 1. The slave ILP.

We solve another ILP, the slave ILP in Fig. 1, in order to find target groups S and T for which the Hamming distance
of �S |X and �T |X is below the threshold d.

The aim of the slave ILP is to select (via the variable vectors s and t) two sets of targets (S and T) that yield a
maximally violated group inequality. In other words, the ILP tries to create two groups that resemble each other as
much as possible in terms of their signatures.

Variables �0
j and �1

j model the similarity of S and T for probe j, i.e., �0
j = 1 if and only if both �S

j and �T
j are equal

to zero and �1
j = 1 if and only if both values are equal to one. Besides the trivial constraints (11)–(14) and inequality

(8), which keep S and T disjoint,2 we have three main classes of inequalities: The first class, given by inequalities (2)
and (3), models that �0

j = 0 if S or T contain a target that hybridizes to probe j. Similarly, (4) and (5) express that, if

�1
j = 1, at least one target in both S and T must hybridize to j. Finally, (6) and (7) avoid S = ∅ and T = ∅, and (9) and

(10) control the size of S and T.

Lemma 4. A feasible solution (s, t, �0, �1) of the slave ILP for a partial design with virtual probes characterized by
X corresponds to two disjoint groups of targets, S and T. Furthermore, the value

h := |X| −
∑
j∈X

(�0
j + �1

j)

is equal to the Hamming distance of S and T with respect to X.

2 In fact, this restricts the set of feasible solutions too much. The problem formulation only requires that S �= T , not that S ∩ T = ∅. In the next
section we show how to formulate the S �= T requirement by introducing additional variables. For the sake of clarity, we stick to S ∩ T = ∅ for the
moment.

846 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

Proof. The proof of this lemma is similar to the proof of Lemma 6 in the next section where we give a more elegant
ILP formulation that does not require virtual probes. �

If h is smaller than the minimum required Hamming distance d, we have found a violated group inequality,
namely

n+l∑
j=1

|�S
j − �T

j | · xj �d .

We add this inequality to the master ILP, solve it again, and iterate the process. If we do not find further violated
inequalities, we have solved the group separation problem and know that our selection of probes is well-suited to
additionally distinguish between target groups of small cardinality.

There are several drawbacks of this first ILP approach. First, and most importantly, the following property of virtual
probes may prevent the first ILP approach from finding an optimal solution to Problem 2: suppose that two targets
s and t are only d ′-separable, with d ′ < d . Then, we have to use virtual probes, say for target s, to d-separate s and
t. Unfortunately, this has consequences not only for the separation of the target sets {s} and {t}, but also for all S
and T with s ∈ S and s /∈ T : the virtual probe, which has to be included in any case, also serves as a separating
probe for all such S and T, even though some of these pairs may be d-separable without virtual probes. Second, the
slave ILP needs the integer solution of the current master ILP before a violated group inequality can be found; it
cannot even be formulated with an intermediate solution of a LP relaxation. Finally, it would be preferable to have
a purely combinatorial polynomial-time algorithm to solve the separation problem. In the next section we present
a better formulation that does not suffer from the first two drawbacks. The last point remains an issue for further
research.

2.2. Formulation without virtual probes

In this section we present a more elegant ILP formulation for the probe selection problem (Problem 2) that does not
require virtual probes. We propose the following solution:

For two groups of targets S and T we define their maximal possible separation

h(S, T) =
∑
j∈N

|�S
j − �T

j |,

and give a direct formulation for the probe selection problem, replacing the master and slave ILPs from the previous
section.

min
∑
j∈N

xj (15)

s.t. xj ∈ {0, 1} ∀j ∈ N , (16)∑
j∈N

|�S
j − �T

j | · xj � min{d, h(S, T)} ∀S, T ⊆ M, |S|�c, |T |�c, S �= T . (17)

Again, the coverage constraints are satisfied by inequalities (17) with S = ∅ and T = {ti} for i ∈ M .
Clearly the number of constraints (17) is exponential. We therefore consider relaxing the formulation by these

constraints and solving the corresponding separation problem at each node of the branch-and-bound tree:

Problem 5 (Separation problem for group inequalities). Given an optimal solution x∗ of the relaxation of the ILP
(15)–(16) with only some of the constraints (17) satisfied, find S, T ⊆ M , |S|�c, |T |�c, S �= T with

∑
j∈N

|�S
j − �T

j | · x∗
j < min{d, h(S, T)}, (18)

or prove that no such sets exist.

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 847

Rewriting (18) as
∑
j∈N

|�S
j − �T

j | · x∗
j < d (19)

and ∑
j∈N

|�S
j − �T

j | · x∗
j < h(S, T) (20)

enables us to give the following ILP with variables �S ∈ [0, 1]N , �T ∈ [0, 1]N , � ∈ [0, 1]N , z ∈ R, s ∈ {0, 1}M , and
t ∈ {0, 1}M to formulate the separation problem:

min
∑
j∈N

�j x
∗
j − z (21)

s.t. �S
j �si ∀(i, j) ∈ M × N with Hij = 1, (22)

�T
j � ti ∀(i, j) ∈ M × N with Hij = 1, (23)

�S
j �

∑
i∈M

siHij , �T
j �

∑
i∈M

tiHij ∀j ∈ N , (24)

�j ��S
j − �T

j , �j ��T
j − �S

j ∀j ∈ N , (25)

�j ��S
j + �T

j , �j �2 − �S
j − �T

j ∀j ∈ N , (26)

si + ti �1 ∀i ∈ M , (27)
∑
i∈M

si + ti �1, (28)

∑
i∈M

si �c,
∑
i∈M

ti �c, (29)

z�
∑
j∈N

�j (30)

z�d (31)

si ∈ {0, 1}, ti ∈ {0, 1} ∀i ∈ M . (32)

Similar to the slave ILP from the previous section, this formulation builds the sets S and T via the variable vectors s
and t. The variables �j model the difference of the signatures of the two chosen groups at position j, that is, we have
�j = 1 if and only if �S

j �= �T
j and �j = 0 if the two groups have the same signature at position j. Clearly, we want to

find two groups of minimum difference or—as in the slave ILP—of maximum similarity.
The construction of the signature vector � via inequalities is similar to the computation of vector � in the slave ILP.

Note, however, that we compute the signatures over the whole range of candidate probes. Inequalities (25) and (26)
force variables �j = 1 if and only if the signatures differ for probe j, and �j = 0 otherwise. Again, constraints (27),
(28), and (29) ensure S ∩ T = ∅, S ∪ T �= ∅, and |S|�c, |T |�c, respectively.

The most important difference to the slave ILP in the previous section are constraints (30) and (31): they make
sure that inequalities (19) and (20) hold. Variable z will be set to the minimum of the separation parameter d and the
maximum possible separation of the chosen groups, and inequality (18) is violated if and only if the objective function
yields a value lower than zero.

Note that restricting s and t to integers automatically guarantees that the components of �, �S and �T are integers
as well, so these constraints need not be enforced explicitly.

848 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

Lemma 6. A feasible solution (s, t, �S, �T , �) of ILP (21)–(32) corresponds to two target groups S and T with S∩T =∅
for which

|�S
j − �T

j | = �j ∀j ∈ N (33)

holds. Its objective function value is equal to

∑
j∈N

|�S
j − �T

j | · x∗
j − min{d, h(S, T)},

and if it is smaller than zero, we have found a violated group inequality.

Proof. Let (s, t, �S, �T , �) be a feasible solution of the integer linear program. We construct two sets S and T based
on the characteristic vectors s and t. Clearly, we have S ∩ T = ∅ due to inequality (27). Inequalities (22)–(24) ensure
that �S

j = 1 if there is at least one i ∈ S with Hij = 1, and that �S
j = 0 if no such i exists in S (likewise for T).

Given the signatures at position j, inequalities (25)–(26) take care of the correct computation of �j . If �S
j and �T

j are
equal, the third and fourth inequality force �j to zero. Otherwise, the first and second inequality force �j to one. Thus,
�j = |�S

j − �T
j | for all j ∈ N . With this equation, constraint (30) changes to

z� |�S
j − �T

j | = h(S, T).

Together with (31) this yields

z = min{d, h(S, T)},

which concludes the proof. �

As mentioned in the previous section, the disjointness constraint S∩T =∅ (27) can be changed into a set of constraints
that ensure only S �= T as follows. We introduce a new variable vector, �ST , and replace (27) by

�ST
i �si − ti , �ST

i � ti − si ∀i ∈ M , (34)

�ST
i �si + ti , �ST

i �2 − si − ti ∀i ∈ M , (35)∑
i∈M

�ST
i �1. (36)

The construction is similar to the one that measures the distinctness of the signatures. Whenever s and t are different
at some position i, the corresponding value of �ST

i is set to one by inequalities (34) and (35) and to zero otherwise.
Constraint (36) requires the vectors to be different at at least one position.

Corollary 7. The integer linear program (21)–(32) with (34)–(36) instead of (27) solves the separation problem for
group inequalities.

3. Experimental validation

Schliep et al. [13] tested their group testing method employing a greedy heuristic on a set of 1230 28S rDNA
sequences from different organisms present in the Meiobenthos [6]. The set contains redundancies and many close
homologs, so the sequences were clustered at 99% sequence identity over at least 99% of the sequence length, and a
representative for each cluster was picked arbitrarily. This procedure results in a test set of 679 target sequences. We
have access to this data set and report on the results. Additionally, in order to evaluate the benefits of our new method
more systematically, we also generate artificial data sets and compare the results of our method against the result of
the greedy heuristic.

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 849

(a) (b)

Fig. 2. The two evolutionary tree models used for sequence family generation. Branch lengths are indicated next to sample branches. The 256
(respectively, 400) leaf sequences were taken as family members. In (a) not all children of the nodes are shown.

3.1. Generating artificial data

3.1.1. Generating sequence families
To generate artificial data that closely models homologous sequence families, we use the REFORM (Random

Evolutionary FORests Model) software developed by Rahmann [10] that allows to define arbitrary sets of evolutionary
trees (“evolutionary forests”) with either random or pre-defined root sequences. The sequences are evolved from
the root through internal nodes to the leaves along the branches of the tree for a time proportional to the branch
lengths, and may consist of several segments. For each segment it is possible to specify a separate evolutionary
model.

The nucleotide substitution model is given as an evolutionary Markov process (EMP); for example as the simple
model by Jukes and Cantor [3] that assigns equal probabilities to all mutation types. In general, the EMP is specified
by any valid rate matrix Q = (Qij) with Qij > 0 for i �= j and Qii = −∑

j �=iQij < 0. For i �= j , Qij is the
mutation rate i → j , where i and j are different nucleotides. |Qii | then measures the overall mutation rate away from
i. Evolutionary time and branch lengths are measured in percentage of expected mutations. Therefore, the entries of
Q are normalized by a calibration condition, such as

∑
i �=j�iQij = 0.01, where �i denotes the stationary or average

frequency of nucleotide i. The condition states that on average, within one time unit, we expect 1/100 mutation events
per site.

An indel model is placed on top of the substitution process by specifying a deletion rate, an insertion rate, an indel
length distribution, and a nucleotide distribution of inserted residues. During sequence evolution along a branch, at
each position of the parent sequence, the probability of deleting one or several characters is given by the product of
the branch length, the relative speed for the current segment, and the deletion rate. The length of the gap is then drawn
from the specified gap length distribution. A similar rule is applied to inserts. Substitutions are only computed for
non-deleted positions, but inserts can follow immediately after deletions.

For our experiments, we use two different forest models (see also Fig. 2). From each model, five independent test
sets are generated.

(a) The first model produces a family of 256 sequences of average length 1000 nt. The root sequence consists of
a random sequence of length 1000 nt with uniform nucleotide distribution. It is split into 5 segments of equal
size with relative evolutionary speeds of 0.9, 0.95, 1, 1.05, and 1.1. Substitutions are generated according to the
Jukes–Cantor model. The global delete and insert rates are set to 0.005, and the distribution of the gap lengths
is given by the probability vector proportional to (8, 1, 4, 2, 1, 0.5, 0.25, 0.125, . . .). Inserted residues are drawn
from the uniform distribution. The tree has three levels of internal nodes below the root for a total of 4 + 16 + 64
internal nodes. Starting with the root, each internal node has 4 children. The distance between adjacent nodes
corresponds to t = 1 percent of expected mutations. Each internal node on the third level has four leaf children at
a distance of t = 0.1 for a total of 256 leaves with different distances to each other: For each given leaf, there are
three leaves at distance 0.2, 12 leaves at distance 2.2, 48 leaves at distance 4.2, and 192 leaves at distance 6.2. The
leaf sequences are subsequently used for probe candidate selection.

850 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

(b) In the second model, all global parameters are as in the first model, and the sequences consist of a single segment
of average length 1000 nt. The topology differs considerably from the first model: the tree consists of a linear chain
of 100 internal nodes (including the root) 3 time units apart; two “cherries” with branch lengths of 0.2 are attached
to each internal node (Fig. 2b) for a total of 400 leaves.

These two particular model topologies were chosen because they produce difficult sets of very similar target sequences
that cannot be easily separated with unique probes. Model (a) is strictly hierarchical, while model (b) has an overall
linear structure.

3.1.2. Generating probe candidates
To generate probe candidates for each of the 10 families (5 instances of each model), we use the PROMIDE software

[8,9]. Probe candidates are selected to be between 19 and 21 nt long and have a stability (Gibbs energy) of −20
to −19.5 kcal/mol−1 at 40 ◦C and 0.075 M [Na+] according to the nearest neighbor model with parameters from
SantaLucia [12].

We keep probes that occur as exact substrings in up to 50 family members. If, however, a probe candidate p has a
long common substring (at least |p| − 3 nt) with another family member sequence t∗, but does not occur exactly in it,
we discard this candidate because we cannot make a reasonably certain binary decision: cross-hybridization may or
may not cause p to show a signal when t∗ is present in a sample. The decision to keep only candidates where a clear
decision is possible was made to keep the false positive and false negative error levels reasonably low.

We found that good probe candidates frequently occur in clusters in the target sequences; probes in the same cluster
tend to have the same properties. If this happens, only one candidate from each cluster is selected.

3.2. Evaluating the selection

Minimizing the number of probes is an obvious objective function in the selection of the design. In the presence
of errors, however, a reduction in number of probes is futile if the resulting set of probes performs worse. A natural
performance measure is the ability to decode a microarray experiment, that is, to infer which biological agents were
present in the sample. We will describe the statistical model for decoding and the Monte Carlo approach for the
estimation of performance proposed by Schliep et al. [13], which is based on a group testing approach for screening
clonal libraries [5].

From now on, we assume that a design has been fixed and denote the number of probes in the design by n (up to
now, n was the number of probe candidates).

3.2.1. Statistical decoding
In an experiment, we observe whether each probe has hybridized or not. The experimental result can therefore be

described as a binary vector r = (r1, . . . , rn) ∈ {0, 1}n. We are interested in the posterior probability that a subset T of
targets is exactly the set of targets present in the sample,

P[T |r] = P[r|T] · P[T]
P[r] ∝ P[r|T] · P[T].

In this Bayesian formulation we are left to choose the prior probabilities P[T] for all T ⊂ M and devise a model to
compute the likelihood P[T |r] of the observation r, given the knowledge of T.

To model the prior, we assume that targets are present or absent independently and that there are individual prevalences
fi of targets in the possible samples. Also, we assume that there is a prior on the number of targets simultaneously
present, denoted ck . Together this yields the combined prior for a set T of the form

P[T] ∝ c|T | ·
∏
ti∈T

fi ·
∏
ti /∈T

(1 − fi).

To model the likelihood, we assume that false negative and false positive perturbations of the true result r associated
to T act independently on each probe. Let us write T (j) the set of targets that probe pj hybridizes to. Then we should

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 851

get a hybridization signal for pj if and only if T ∩ T (j) �= ∅. Because of the possibility of false positive and negative
errors with rates f1 and f0, respectively,3 we have the following probability distribution for rj :

P(rj = 1|T) =
{

f1 if T ∩ T (j) = ∅,

1 − f0 if T ∩ T (j) �= ∅.

Because of the assumed conditional independence of probes, we can now compute the likelihood P[r|T].
Finding the set T maximizing the posterior P[T |r] is far from trivial. Also, there will be typically a large number of

distinct sets with about equal posterior, which makes settling on one optimal T dubious. For that reason we compute
the posterior probabilities P[ti ∈ T |r] using Markov chain Monte Carlo with a Gibbs sampler, see [5] for details. The
computation uses a Markov chain (MC) with P[T |r] as its equilibrium distribution and estimates P[ti ∈ T |r] as the
relative frequency of the event ti ∈ T over a large number of sets T sampled using the MC. The result of the decoding
is a list of targets ranked according to their posterior.

3.2.2. Assessing performance
The performance of a design is measured by its ability to decode experiments even if multiple targets are present in

a sample and the error rates in the hybridization experiments are high. Ideally, if we have a true target set T of size k,
then the decoding described in the previous section should assign high probabilities to targets ti ∈ T , and zero to all
others. We would like to quantify in how far this is true for all possible T. This is clearly infeasible, so we resort to a
Monte Carlo approach repeating the following in silico experiment.

We randomly choose a set of k targets, the true positives. That is, we assume that our artificial sample to be analyzed
contains each of the k targets but no others. Neglecting errors at first, the design we are testing yields the set of probes
which all should hybridize to our sample (recall that the design specifies the incidence of targets and probes). This
gives us a set of true positive probes, the ones hybridizing to a chosen target, and true negative probes, the ones which
do not.

Errors are introduced by independently changing result values for true positive probes to negative with probability
f0 and for true negative probes to positive with probability f1. This noisy result is used as input to the MCMC-based
decoding procedure described above.

The result of the decoding is a sorted list of the most probably present targets. To estimate the performance of a
design, we repeat the process for a large number of random target sets for different choices of (small) k and count the
fraction of true positive targets appearing at rank 1, 2, 3, . . . of the result list. A design exhibits maximal performance if
the proportion of true positive targets among the top k found by the decoding procedure is unity when choosing k-sized
samples. For example, when evaluating the heuristic design, cf. Table 4, the value 0.93 for two positives among “top
2” implies that 93 of the 100 true positives in the 50 repetitions of the Monte-Carlo experiment were ranked among the
top two by the decoding. Similarly, 98 of the 100 true positives were found among those ranked first to fourth.

Clearly, the performance degrades as k grows. Even for small k maximal performance cannot be expected for
two reasons. First, in the presence of realistically large error rates, say 5%, the number of true positive probes is
vastly outnumbered by the number of false positive ones. Second, the decoding procedure is stochastic and hence
not guaranteed to give an exact result. We propose to use the proportion of true positives among the top k + 1
targets for k-cardinality samples. The choice of the maximal value of k to consider depends on the application
and can be guided by the cardinality prior ck . For example one could pick K as the minimum value for which∑K

k=1ck �0.95 holds.

3.3. Results

In [4] we reported on our results using the Markmann [6] data set (679 28S rDNA targets from different organisms
present in the Meiobenthos) denoted (M), as well as the ten artificial data sets described in Section 3.1, denoted (a)1 to
(a)5, and (b)1 to (b)5.

In our experiments, we used different parameters for coverage and separation of targets (these correspond to the
unique parameter d used in the theoretical description of the approaches). We generated designs with minimum coverage

3 The error rates f0 and f1 should not be confounded with the prevalences fi despite the similar notation.

852 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

Table 2
For each artificial data set (a)1 to (b)5 and for the Markmann [6] meiobenthic data (M), the table shows the number m of targets, the number #cand
of probe candidates, and the number of probes n chosen by the greedy design heuristic and the ILP approach, using pairwise separation only

Set m #cand Greedy n ILP n n ratio t ratio

(a) 1 256 2786 1163 (42%) 503 (18%) 2.31 0.23
(a) 2 256 2821 1137 (40%) 519 (18%) 2.19 0.21
(a) 3 256 2871 1175 (41%) 516 (18%) 2.28 0.25
(a) 4 256 2954 1169 (40%) 540 (18%) 2.17 0.17
(a) 5 256 2968 1175 (40%) 504 (17%) 2.33 0.24

(b) 1 400 6292 1908 (30%) 879 (14%) 2.17 0.02
(b) 2 400 6283 1885 (30%) 938 (15%) 2.01 0.02
(b) 3 400 6311 1895 (30%) 891 (14%) 2.13 0.06
(b) 4 400 6223 1888 (30%) 915 (15%) 2.06 0.02
(b) 5 400 6285 1876 (30%) 946 (15%) 1.98 0.07

(M) 679 15,139 3851 (25%) 3158 (21%) 1.22 0.08

Percentages represent the number of selected probes in relation to the number of probe candidates. The probe ratio nGreedy/nILP and the ratio
tGreedy/tILP of the required design times are also shown.

Table 3
Comparison of design size between greedy and ILP solution

Data set Targets Candidates Heuristic1 Heuristic2 ILP1 ILP2

M 679 15139 3879 3879 3158 3158
LSU 1165 11047 4901 4901 3887 3887
(a)1 256 2786 1164 1165 503 515
(cl)1 256 2530 1083 1083 542 566

The column targets contains the number of sequences in each data set and the column candidates the number of probe candidates in the incidence
matrix H. The next four columns show the number of probes in the design matrix computed by the heuristic algorithm without and with random
separation (500,000 random groups) and by the ILP-based algorithm without (ILP1) and with (ILP2) group separation (the maximal cardinality of
groups was set to c = 5).

10 and minimum Hamming distance 5 with the greedy heuristic (a part of the PROMIDE package) and with the ILP approach
described in Section 2, utilizing version 8.1 of the commercial CPLEX software with standard settings [2].

The results are shown in Table 2. Naturally, the heuristic runs faster, but it also generates a design that is often more
than twice as large than the optimal design found with the ILP approach.

This is a general trend observed in the real and the artificial data sets. Our approach significantly reduces the amount
of probes needed in the design at the cost of an increased running time. The absolute running times are in the range of
50–1700 s and hence quite practical.

In [4] we did not compute the group separations for all cases and stated that we expect only a moderate increase
in the design size. In this work, we implemented the group separation for disjoint groups and investigate the effect
on the data sets (M), (a)1 and two new data sets. The first new data set consists of 1165 rRNA Sequences that were
obtained from the Ribosomal Database Project [1]. This set contains sequences of the Large Ribosomal Subunit from
different organisms and of varying size. We also created another artificial data set with REFORM. The evolutionary
model was the same as used for (a)1. However, the branch lengths of the first three levels were changed from 1.0
to 0.5. This change leads to rather homologous sequences. In the following we call these data sets (LSU) and (cl)1,
respectively.

The results are shown in Table 3. Apparently the group separation had no influence on the designs of the two data
sets (M) and (LSU) containing rRNA sequences. The design remains exactly the same and no new probes are included.
This implies that the pairwise separation was already optimal for guaranteeing the group separation.

Furthermore, the additional random separation of the greedy algorithm has also almost no effect for all data sets,
even though we generated 500,000 random pairs of groups. For the artificially generated data sets the group separation

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 853

Table 4
Decoding results for the greedy heuristic design and the ILP design on the Markmann [6] data set (M)

Heuristic design for (M)

k= 1 2 3 4 5
Top 1 0.92 – – – –
Top 2 0.98 0.93 – – –
Top 3 0.98 0.96 0.94 – –
Top 4 1.00 0.98 0.95 0.87 –
Top 5 1.00 0.98 1.00 0.90 0.92
Top 10 1.00 0.98 1.00 0.94 0.98

ILP design for (M)
k= 1 2 3 4 5
Top 1 0.86 – – – –
Top 2 0.90 0.92 – – –
Top 3 0.96 0.96 0.91 – –
Top 4 1.00 0.97 0.98 0.88 –
Top 5 1.00 0.97 0.99 0.95 0.83
Top 10 1.00 0.99 1.00 1.00 0.92

Reading example: the value 0.93 for k = 2 targets among “top 2” implies that 93 of the 100 true positives in the 50 repetitions of the Monte Carlo
experiment were ranked among the top two by the decoding. Similarly, 98 of the 100 true positives were found among those ranked first to fourth.

Table 5
Decoding results for artificial data set (a)1

Heuristic design for (a)1

k= 1 2 3 4 5
Top 1 0.98 – – – –
Top 2 0.98 1.00 – – –
Top 3 0.98 1.00 0.99 – –
Top 4 0.98 1.00 1.00 0.93 –
Top 5 0.98 1.00 1.00 0.95 0.82
Top 10 0.98 1.00 1.00 0.97 0.91

ILP design for (a)1
k= 1 2 3 4 5
Top 1 1.00 – – – –
Top 2 1.00 0.99 – – –
Top 3 1.00 0.99 0.95 – –
Top 4 1.00 0.99 0.97 0.92 –
Top 5 1.00 0.99 0.97 0.93 0.6
Top 10 1.00 0.99 0.97 0.97 0.75

See Table 4 for further explanations.

leads only to a small increase in the design size. It should be noted that the separation routine takes considerable time.
For all data sets the algorithms needed 5 h on average to find a solution.

The solution of both ILPs, with and without group separation, reduces the number of probes considerably. The
question remains whether this reduction has any impact on the ability to decode the experiments. We do not expect to
do better than the heuristic (except for random fluctuations in the Monte Carlo algorithm), but we expect to be almost
as good with the minimal probe set as with the much larger heuristic probe set.

Let us first consider the designs computed by the pairwise separation only (ILP1). We chose a false positive and
false negative rate of 5% and ran the decoding for each number of positives 50 times with different randomly chosen
targets in the sample. Table 4 shows the result of the decoding procedure for data set (M), Table 5 for a representative
of the first artificial data set (a), and Table 6 for a representative of the second artificial data set (b). The tables show
for k true positives (first row) the percentage of true positive targets found at the first position (top 1), among the first
two positions (top 2), etc. For ease of reading the best values are in boldface.

854 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

Table 6
Decoding results for artificial data set (b)3

Heuristic design for (b)3

k= 1 2 3 4 5
Top 1 0.98 – – – –
Top 2 1.00 0.99 – – –
Top 3 1.00 0.99 0.96 – –
Top 4 1.00 0.99 0.96 0.96 –
Top 5 1.00 0.99 0.96 0.98 0.78
Top 10 1.00 0.99 0.96 0.98 0.90

ILP design for (b)3
k= 1 2 3 4 5
Top 1 0.98 – – – –
Top 2 1.00 1.00 – – –
Top 3 1.00 1.00 0.97 – –
Top 4 1.00 1.00 0.98 0.96 –
Top 5 1.00 1.00 0.99 0.97 0.70
Top 10 1.00 1.00 0.99 0.98 0.84

See Table 4 for further explanations.

It can be clearly seen that the ILP solution—remember that it contains often less than half of the probes of the heuristic
solution—does still have excellent decoding capabilities, indeed it is sometimes slightly better than the heuristic. Also it
can be seen that for five true positives the decoding capability of our solution is indeed worse than that of the heuristic.
Obviously the pairwise separation is not sufficient for larger k. The ILP solution has then more problems than the
heuristic solution (which has many more probes).

We next investigate whether the decoding capabilities become indeed better when we add more probes to guarantee
the group separation. The corresponding tables for the designs with group separation (ILP2) are given as Tables 7
and 8.

The results show that the decoding performance increases as expected if the group separation version of the ILP
algorithm is used. Especially for four and five true positives the improved ILP solution is able to separate the targets
much better.

The question is now why the group separation performs differently on the used data sets. Further investigation
showed that the results correlate with the percentage of unique probe candidates: The data set a(1), which had
the largest improvement in decoding capabilities, was the one with the lowest fraction of unique probe
candidates.

Another question that arises is whether the use of virtual probes to guarantee feasibility of the solution has an impact
on the decoding capabilities of the design. We adapt two strategies: in the first one we globally reduce the coverage
constraint until we can solve the ILP without the use of virtual probes; in the second variant, we specifically relax some
group inequalities that make the ILP infeasible. We could not find that the use of virtual probes significantly alters the
decoding capabilities (data not shown).

4. Conclusions

We have presented an exact approach to the problem of selecting non-unique probes. We have given two different
integer linear programming formulations for the problem, one based on adding virtual probes to overcome problems
with unseparable target sets and a more elegant one without virtual probes. Based on the formulations, we have
developed a branch-and-cut formulation for solving the probe selection problem in the general case. Further research
should investigate the complexity status of the separation problem.

Our implementation is able to separate all pairs of targets optimally in reasonable computation time and achieves a
considerable reduction of the numbers of probes needed compared to a previous greedy algorithm. The size reduction
has only a mild effect on the decoding capabilities of the design, as verified with Monte Carlo simulations.

These results reinforce the findings of [13], namely that a group testing approach using non-unique probes is capable
of accurately assessing the presence of small target sets, even when minimizing the cardinality of the probe set. Our

G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856 855

Table 7
Comparison of decoding capabilities for data set (a)1 using the heuristic design, the ILP design with group separation and the ILP design without
group separation

k Top 1 Top 2 Top 3 Top 4 Top 5 Top 10 Top 20

(a)1, Heuristic design, 5% error rate
1 0.990 1.000 1.000 1.000 1.000 1.000 1.000
2 – 1.000 1.000 1.000 1.000 1.000 1.000
3 – – 0.994 1.000 1.000 1.000 1.000
4 – – – 0.950 0.962 0.970 0.970
5 – – – – 0.830 0.912 0.912

(a)1, ILP design (group sep.), 5% error rate
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 – 0.985 0.995 1.000 1.000 1.000 1.000
3 – – 0.983 0.993 0.993 0.997 1.000
4 – – – 0.910 0.930 0.968 0.990
5 – – – – 0.646 0.826 0.902

(a)1, ILP design (no group sep.), 5% error rate
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 – 0.990 0.990 0.990 0.990 0.990 0.990
3 – – 0.947 0.967 0.967 0.973 0.973
4 – – – 0.915 0.930 0.965 0.965
5 – – – – 0.600 0.752 0.752

Reading example: averaged over all experiments with k = 5 true targets, we found 91.2% of the true targets among the top 10 predicted ones in the
heuristic design (1165 probes; cf. Table 3). The success rate decreases to 82.6% for the ILP design with group separation (515 probes) and to 75.2%
without group separation (503 probes).

Table 8
Comparison of decoding capabilities for data set (cl)1, similar to Table 7

k Top 1 Top 2 Top 3 Top 4 Top 5 Top 10 Top 20

(cl)1, Heuristic design, 5% error rate
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 – 1.000 1.000 1.000 1.000 1.000 1.000
3 – – 1.000 1.000 1.000 1.000 1.000
4 – – – 0.985 0.988 1.000 1.000
5 – – – – 0.868 0.976 0.996

(cl)1, ILP design (group sep.), 5% error rate
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 – 1.000 1.000 1.000 1.000 1.000 1.000
3 – – 0.983 0.987 0.990 1.000 1.000
4 – – – 0.927 0.948 0.980 0.995
5 – – – – 0.770 0.934 0.990

(cl)1, ILP design (no group sep.), 5% error rate
1 0.990 1.000 1.000 1.000 1.000 1.000 1.000
2 – 0.990 0.995 0.995 0.995 0.995 0.995
3 – – 0.993 1.000 1.000 1.000 1.000
4 – – – 0.917 0.938 0.978 0.993
5 – – – – 0.712 0.894 0.950

approach surpasses previous optimization approaches to probe selection (e.g. [11]), as we can cope with multiple targets
simultaneously present in a sample. This will almost always be the case in real applications.

Furthermore, experiments with our group separation implementation show that enforcing the separability between
small groups adds only a small number of probes while improving the decoding capabilities (as conjectured by Klau
et al. [4]).

856 G.W. Klau et al. / Discrete Applied Mathematics 155 (2007) 840–856

The software is available to the community (see http://www.inf.fu-berlin.de/inst/ag-bio).

Acknowledgments

The authors thank Dietmar Ebner for help with implementing the experimental setup used in Section 3.3, Diana
Poensgen as well as Ralf Borndörfer for helpful discussions, Ole Schulz-Trieglaff who conducted the new computational
experiments described in Section 3.3, and two anonymous referees for valuable comments.

References

[1] J. Cole, B. Chai, T. Marsh, R. Farris, Q. Wang, S. Kulam, S. Chandra, D. McGarrell, T. Schmidt, G. Garrity, J. Tiedje, The ribosomal database
project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy, Nucleic Acids Res. 31 (2003)
442–443.

[2] ILOG, Inc., 1987–2004. CPLEX, 〈http://www.ilog.com/products/cplex〉.
[3] T.H. Jukes, C.R. Cantor, Evolution of protein molecules, in: H.N. Munro (Ed.), Mammalian Protein Metabolism, Academic Press, New York,

1969, pp. 21–132.
[4] G.W. Klau, S. Rahmann, A. Schliep, M. Vingron, K. Reinert, Optimal robust non-unique probe selection using integer linear programming, in:

Proceedings of the 12th International Conference on Intelligent Systems for Molecular Biology (ISMB-04), 2004.
[5] E. Knill, A. Schliep, D.C. Torney, Fall, Interpretation of pooling experiments using the Markov chain Monte Carlo method, J. Comput. Biol. 3

(3) (1996) 395–406.
[6] M. Markmann, Entwicklung und Anwendung einer 28S rDNA-Sequenzdatenbank zur Aufschlüsselung der Artenvielfalt limnischer

Meiobenthosfauna im Hinblick auf den Einsatz moderner Chiptechnologie, Ph.D. Thesis, University of Munich, 2000.
[7] S. Rahmann, Rapid large-scale oligonucleotide selection for microarrays, in: Proceedings of the First IEEE Computer Society Bioinformatics

Conference (CSB), IEEE, New York, 2002.
[8] S. Rahmann, Fast and sensitive probe selection for DNA chips using jumps in matching statistics, in: Proceedings of the Second IEEE

Computational Systems Bioinformatics (CSB’03) Conference, IEEE, New York, 2003.
[9] S. Rahmann, Fast large scale oligonucleotide selection using the longest common factor approach, J. Bioinformatics and Comput. Biol. 1 (2)

(2003) 343–361.
[10] S. Rahmann, REFORM (Random Evolutionary FORests Modeling software), 2003, Available at 〈http://www.molgen.mpg.de/∼rahmann〉.
[11] S. Rash, D. Gusfield, String barcoding: uncovering optimal virus signatures, in: Proceedings of RECOMB 2002, April 2002.
[12] J. SantaLucia, A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics, Proc. Nat. Acad. Sci. USA

95 (1998) 1460–1465.
[13] A. Schliep, D.C. Torney, S. Rahmann, Group testing with DNA chips: generating designs and decoding experiments, in: Proceedings of the

Second IEEE Computer Society Bioinformatics Conference (CSB 2003), IEEE, New York, 2003.
[14] X. Wang, B. Seed, Selection of oligonucleotide probes for protein coding sequences, Bioinformatics 19 (2003) 796–802.
[15] L.A. Wolsey, Integer Programming, Wiley Interscience Series in Discrete Mathematics and Optimization, Wiley, New York, 1998.

http://www.inf.fu-berlin.de/inst/ag-bio
http://www.ilog.com/products/cplex
http://www.molgen.mpg.de/rahmann

	Integer linear programming approachesfor non-unique probe selection
	Introduction
	Problem definition

	Integer linear programming formulations
	Virtual probe formulation
	Finding violated group inequalities

	Formulation without virtual probes

	Experimental validation
	Generating artificial data
	Generating sequence families
	Generating probe candidates

	Evaluating the selection
	Statistical decoding
	Assessing performance

	Results

	Conclusions
	Acknowledgments
	References

