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Abstract. The problem of clustering data can be formulated as a graph partition-
ing problem. In this setting, spectral methods for obtaining optimal solutions have
received a lot of attention recently. We describe Perron Cluster Cluster Analysis
(PCCA) and establish a connection to spectral graph partitioning. We show that
in our approach a clustering can be efficiently computed by mapping the eigenvec-
tor data onto a simplex. To deal with the prevalent problem of noisy and possibly
overlapping data we introduce the Min-chi indicator which helps in confirming the
existence of a partition of the data and in selecting the number of clusters with
quite favorable performance. Furthermore, if no hard partition exists in the data,
the Min-chi can guide in selecting the number of modes in a mixture model. We
close with showing results on simulated data generated by a mixture of Gaussians.

1 Introduction

In data analysis, it is a common first step to detect groups of data, or clusters,
sharing important characteristics. The relevant body of literature with regard
to methods as well as applications is vast (see Hastie et al. (2001) or Jain and
Dubes (1988) for an introduction). There are a number of ways to obtain a
mathematical model for the data and the concept of similarity between data
points, so that one can define a measure of clustering quality and design
algorithms for finding a clustering maximizing this measure. The simplest,
classical approach is to model data points as vectors from Rn. Euclidean
distance between points measures their similarity and the average Euclidean
distance between data points to the centroid of the groups they are assigned
to is one natural measure for the quality of a clustering. The well-known k-
means algorithm, Jain and Dubes (1988), will find a locally optimal solution
in that setting.

One of the reasons why the development of clustering algorithms did
not cease after k-means are the many intrinsic differences of data sets to
be analyzed. Often the measure of similarity between data points might not
fulfill all the properties of a mathematical distance function, or the measure of
clustering quality has to be adapted, as for example the ball-shape assumption
inherent in standard k-means does not often match the shape of clusters in
real data.
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An issue which is usually, and unfortunately, of little concern, is whether
there is a partition of the data into a number of groups in the first place and
how many possible groups the data support. Whenever we apply a clustering
algorithm which computes a k-partition this is an assumption we imply to
hold for the data set we analyze. The problem is more complicated when k
is unknown. In the statistical literature, McLachlan et al. (1988) suggested
mixture models as alternatives for problem instances where clusters overlap.

We address the problem of finding clusters in data sets for which we do
not require the existence of a k-partition. The model we will use is a similarity
graph. More specifically, we have G = (V,E), where V = {1, . . . , n} is the set
of vertices corresponding to the data points. We have an edge {i, j} between
two vertices iff we can quantify their similarity, which is denoted w(i, j). The
set of all edges is E and the similarities can be considered as a function
w : E 7→ R+

0 . The problem of finding a k-partition of the data can now be
formulated as the problem of partitioning V into k subsets, V = ∪k

i=1Vi. Let
us consider the problem of finding a 2-partition, say V = A∪B. This can be
achieved by removing edges {i, j} from E for which i ∈ A and j ∈ B. Such a
set of edges which leaves the graph disconnected is called a cut and the weight
function allows us to quantify cuts by defining their weight or cut-value,

cut(A,B) :=
∑

{i,j}∈E,i∈A,j∈B

w(i, j).

A natural objective is to find a cut of minimal value. A problem with this
objective function is that sizes of partitions do not matter. As a consequence,
using min-cut will often compute very unbalanced partitions, effectively split-
ting V into one single vertex, or a small number of vertices, and one very large
set of vertices. We can alleviate this problem by evaluating cuts differently.

Instead of just considering partition sizes one can also consider the similar-
ity within partitions, for which we introduce the so-called association value
of a vertex set A denoted by a(A) = a(A, V ) :=

∑
i∈A

∑
j∈V

wij . Defining the

normalized cut by

Normcut(A,B) =
cut(A,B)
a(A, V )

+
cut(A,B)
a(B, V )

,

we observe that the cut value is now measured in terms of the similarity of
each partition to the whole graph. Vertices which are more similar to many
data points are harder to separate. As we will see, the normalized cut is well
suited as an objective function for minimizing because it keeps the relative
size and connectivity of clusters balanced.

The min-cut problem can be solved in polynomial time for k = 2. Finding
k-way cuts in arbitrary graphs for k > 2 is proven NP-hard by Dahlhaus
et al. (1994). For the two other cut criteria, already the problem of finding
a 2-way cut is NPC, for a proof, see appendix in Shi and Malik (2000).
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However, we can find good approximate solutions to the 2-way normalized
cut by considering a relaxation of the problem, see Kannan et al. (1999) and
Shi and Malik (2000). Instead of discrete assignments to partitions consider
a continuous indicator for membership. Let D = diag(d(1), . . . , d(n)) and
d(i) =

∑
j∈V,i 6=j

w(i, j). The relaxation of the 2-way normalized cut problem

can be formulated as

(D −W )x = λDx. (1)

For solving the 2-partition problem, we are interested in the eigenvector x2

for the second-smallest eigenvalue, compare Kannan et al. (1999) and Shi and
Malik (2000). In particular, we will inspect its sign structure and use the sign
of an entry x2(i) to assign vertex i to one or the other vertex set. Similarly,
for direct computation of k-partitions one can use all k eigenvectors to obtain
k-dimensional indicator vectors. Previous approaches in Shi and Malik (2000)
and Ng et al. (2002) relied on k-means clustering of the indicator vectors to
obtain a k-partition in this space.

In the next section, we will propose an indicator for the amount of overlap-
ping in W which helps in deciding whether the recursive spectral method is
applicable. Subsequently we will introduce an alternative approach to finding
k-partitions even in absence of a perfect block structure. We first rephrase the
problem equivalently in terms of transition matrices of Markov-chains and use
perturbation analysis to arrive at the main result, a geometric interpretation
of the eigenvector data as a simplex. This allows to devise an assignment of
data into overlapping groups and a measure for the deviation from the sim-
plex structure, the so-called Min-chi value. The advantages of our method are
manifold: there are fewer requirements on the similarity measure, it is effec-
tive even for high-dimensional data and foremost, with our robust diagnostic
we can assess whether a unique k-partition exists. The immediate application
value is two-fold. On one hand, the Min-chi value indicates whether trying
to partition the data into k groups is possible. On the other hand, if clusters
arise from a mixture model, the indicator can be used as a guide for deciding
on the number of modes in a mixture model. We close with showing results
on simulated data generated by a mixture of Gaussians.

2 Clustering Method

2.1 Simplex Structure and Perturbation Analysis

One can transform equation (1) into an eigenvalue problem for a stochastic
matrix:

(D −W )x = λDx
⇔ (I −D−1W )x = λx
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⇔ D−1Wx = (1− λ)︸ ︷︷ ︸
=λ̄

x.

In this equation T = D−1W is a stochastic matrix and the eigenvalues 1 ≥
λ̄ ≥ −1 are real valued, because W is symmetric.

If W has a perfect block diagonal structure with k blocks, then clustering
should lead to k perfectly separated index sets C1, . . . , Ck. With W the matrix
T also has perfect block diagonal structure and due to the row sum of stochas-
tic matrices the characteristic vectors1 χ1, . . . , χk of the sets C1, . . . , Ck are
eigenvectors of T for the k-fold maximal eigenvalue λ̄1 = . . . = λ̄k = 1. The
numerical eigenvector computation in this case provides an arbitrary basis
X = [x1, . . . , xk] of the eigenspace corresponding to the eigenvalue λ̄ = 1,
i.e. with χ = [χ1, . . . , χk] there is a transformation matrix A ∈ Rk×k with

χ = XA. (2)

In other words: If one wants to find the clustering of a perfect block diagonal
matrix T , one has to compute the transformation matrix A which transforms
the eigenvector data into characteristic vectors. If T̃ has almost block struc-
ture it can be seen as an ε-perturbed stochastic matrix of the ideal case T . For
T̃ the k-fold eigenvalue λ̄ = 1 degenerates into one Perron eigenvalue ˜̄λ1 = 1
with a constant eigenvector and a cluster of k− 1 eigenvalues ˜̄λ2, . . . ,

˜̄λk near
1, the so-called Perron cluster. It has been shown, that there is a transfor-
mation matrix Ã such that

χ− χ̃ = O(ε2)

for χ̃ = X̃Ã, see Deuflhard and Weber (2005). If the result χ̃ shall be inter-
pretable, then the vectors χ̃1, . . . , χ̃k have to be “close to” characteristic: I.e.,
they have to be nonnegative and provide a partition of unity. In other words:
The rows of χ̃ as points in Rk have to lie inside a simplex spanned by the k
unit vectors. If clustering is possible, then additionally, for the reason of max-
imal separation of the clusters, for every almost characteristic vector χ̃i there
should be an entry l with χ̃i(l) = 1. It has been shown, that there is always a
possibility to meet three of the four conditions (i) nonnegativity, (ii) partition
of unity, (iii) χ̃ = X̃A, and (iv) 1-entry in every vector. If all four conditions
hold, the solution χ̃ is unique, see Deuflhard and Weber (2005). In this case
the eigenvector data itself spans a simplex. This simplex can be found via
the inner simplex algorithm, see Weber and Galliat (2002) and Deuflhard and
Weber (2005). The result χ̃ of this algorithm always meets the conditions (ii)-
(iv), but the solution may have negative components. The absolute value of
the minimal entry of χ̃ is called the Min-chi indicator. As the uniqueness of
the clustering increases, Min-chi goes to zero. Due to perturbation analysis
it has been shown, that Min-chi= O(ε2), see Weber (2004).
1 A characteristic vector χi of an index subset Ci meets χi(l) = 1 iff l ∈ Ci, and

χi(l) = 0 elsewhere.
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2.2 Implementation: Min-chi in practice

Given an n×m data matrix, we compute pairwise-distances for all pairs and
construct the n × n distance matrix A with a symmetric distance function
w : Rm×Rm 7→ R+

0 . We then convert the distance to a similarity matrix with
W = exp(−βA) where β is a scaling parameter and the stochastic matrix is
defined by T = D−1W . We can use the error measure Min-chi to determine
a locally optimal solution for the number of clusters. Given the matrix T ,
we can use our method to determine a number of clusters denoted by k as
follows:

The Mode Selection Algorithm

1. Choose kmin, . . . , kmax such that the optimal k could be in the interval,
2. Iterate from kmin, . . . , kmax and for each k-th trial, calculate χ for cluster

assignment via the Inner Simplex algorithm and Min-chi as an indicator
for the number of clusters,

3. Choose the maximum k for which Min-chi < Threshold as the number of
clusters.

Selections of the threshold depends on the value β or variance which controls
the perturbation from the perfect block structure of T . As a rule, when β is
large, the threshold can be small because T is almost block-diagonal.

3 Result and Discussion

We compare the Min-chi indicator with the Bouldin index defined in Jain
and Dubes (1988) applied to the result from the Inner Simplex algorithm
described in details by Weber and Galliat (2002) and Deuflhard and Weber
(2005). Given a partition into k clusters by a clustering algorithm, one first
defines the measure of within-to-between cluster spread for the ith cluster
with the notation Ri = max

j 6=i

ej+ei

mji
, where ei is the average distance within

the ith cluster and mij is the Euclidean distance between the means. The
Bouldin index for k is

DB(k) =
1
k

∑
i>1

Ri.

According to the Bouldin indicator, the number of clusters is k∗ such that

k∗ = argmin
kmin...kmax

DB(k).

In the examples of Fig. 3 we compute a sampling of 900 points from three
spherical Gaussians with different variances and means. 180 points with mean
(−1, 0) and 360 points with mean (2, 0) and (2, 3) respectively. For three
different variances 0.15, 0.3, 0.6 and 1.2 we compute the Bouldin index and
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Fig. 1. Simulated data: Mixture of three spherical gaussians with different vari-
ances. Comparison of Min-chi with the Bouldin index.
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the Min-chi indicator for kmin = 2 and kmax = 10. For a low variance in
Fig. 1(a) both indicators give the same result k = 3, but for increasing
variance in Fig. 1(c) and Fig. 1(e) the Bouldin indicator fails, whereas the
Min-chi indicator still finds three clusters. For very high variance in Fig. 1(g),
the Bouldin index finds 9 clusters. In this experiment, the Min-chi indicator is
not unique. Depending on the threshold, two or three clusteres are indicated.
This behaviour becomes worse for increasing variance.

4 Conclusion

In this paper we have shown the relation between Perron Cluster Cluster
Analysis and spectral clustering methods. Some changes of PCCA with re-
gard to geometrical clustering have been proposed, e.g. the Min-chi indicator
for the number k of clusters. We have shown that this indicator is valu-
able also for noisy data. It evaluates the deviation of some eigenvector data
from simplex structure and, therefore, it indicates the possibility of a “fuzzy”
clustering, i.e. a clustering with a certain number of almost characteristic
functions. A simple linear mapping of the eigenvector data has to be per-
formed in order to compute these almost characteristic functions. Therefore,
the cluster algorithm is easy to implement and fast in practice. We have
also shown, that PCCA does not need strong assumptions like other spectral
graph partitioning methods, because it uses the full eigenvector information
and not only signs or less than k eigenvectors.
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