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ABSTRACT Table 1. Target-probe incidence matril
Motivation: Besides their prevalent use for analyzing gene
expression, microarrays are an efficient tool for biological,
medical and industrial applications due to their ability to assess
the presence or absence of biological agents, the targets, in
a sample. Given a collection of genetic sequences of targets t2
one faces the challenge of finding short oligonucleotides, the t3
probes, which allow detection of targets in a sample. Each 14
hybridization experiment determines whether the probe binds
to its corresponding sequence in the target. Depending on the
problem, the experiments are conducted using either unique of mRNA to different probes on a microarray, each probe
or non-unigue probes and usually assume that only one target  targeting a specific gene. A different and likewise important
is present in the sample. The problem at hand is to compute  application, arising for example in medicine, environmental
a design, i.e. a minimal set of probes that allows to infer the  sciences, industrial quality control or biothreat reduction, is
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targets in the sample from the result of the hybridization experi- the identification of biological agents in a sample.

ment. If we allow to test for more than one target in the sample, This wide range of applications leads to the same meth-

the design of the probe set becomes difficult in the case of  odological problem: to determine the presence or absence of
non-unigue probes. targets—viruses or bacteria—in a biological sample.

Results: Building upon previous work on group testing for Our paper focuses on oligonucleotide arrays. To illustrate

microarrays, we describe the first approach to select a minimal the general approach let us assume we would like to identify
probe set for the case of non-unique probes in the presence of  virus subtypes in a sample. If we test whether a number of
asmall number of multiple targets in the sample. The approach  probes, i.e. short oligonucleotides of size 8-25, hybridizes to
is based on an ILP formulation and a branch-and-cut algorithm.  the genome of the virus, we can infer presence or absence of
Our preliminary implementation greatly reduces the numberof  the virus if the hybridization pattern is unique among all vir-

probes needed while preserving the decoding capabilities. uses possibly contained in the sample. This problem is readily

Availability: http://www.inf.fu-berlin.de/inst/ag-bio extended to the case of several simultaneously present viruses

Contact: reinert@inf.fu-berlin.de where we want to determine those which are indeed contained
in the sample.

1 INTRODUCTION In the case of unique probes, neglecting errors, this exten-

Microarrays are a widely used tool as they provide a costsionis trivial, since we will exactly observe the union of those
efficient way to determine levels of specified RNA or DNA Probes that hybridize to the viruses in the set. However, find-
molecules in a biological sample. Typically, one measures thég unique probes is often difficult, e.g. in the case of closely

amount of gene expression in a cell by observing hybridizatiorielated virus subtypes. One way around this basic problem is
to devise a method which can make use of non-unique probes:

*To whom correspondence should be addressed. probes which hybridi_ze to more than one tar.geF. _
"Present address: Genome Informatics, Faculty of Technology, University of ASSUmMe we are given the target.—pmbe mC'd?nce matrix
Bielefeld, D-33595 Bielefeld, Germany. H = (H;;) as shown in Table 1, which contai@ 1 ifprobe
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j hybridizes to target. Then we will observe the hybridiza- this paper is to compute the design matfixgiven some
tion of all probes incident to any target present in the sampletarget—probe incidence matri.

i.e. the logicalCR of the row vectors. If the probe setis not While we strive to minimize the number of probes, we do
carefully chosen, this can easily lead to situations where weaot want to lose the ability to decode, i.e. we want to be able
cannot resolve the experimental result. to infer the original targets even in the presence of errors.

We illustrate the problem using the example in Table 1. The three steps of (1) computing the target—probe incid-
We have four targets,...,7s and a total of nine probes ence matrix, (2) computing a suitable design mafixand
p1,-..., p9.- The target—probe incidence matrik indicates (3) decoding the result were recently addressed by Schliep
which probe hybridizes to which target. et al. (2003). In this work, we address the second step, the

Assume we are given asample and onlyong,0f . ,74isin ~ computation of the design, and use for the first and third step
the sample. The goal is now to choose a suitable design matrike methods proposed in the above-mentioned paper, adopting
D, i.e. to select a minimal set of probes that allows us to infeiits notation to a large extent. Having illustrated the problem
the presence of a single target. In our example it is sufficientve formalize it now.
to use probegs, p2 and p3 for detecting the presence of a
single target (e.g. for target probesp; and ps hybridize, . .
whﬁe P2 goeé n?)t). Minir%izirrl)g the number of grobes isali (i € M= {l,... m}) and then candidate probes by,
very reasonable objective function, since it is proportional to(J E_N = {1,...,n}), and _dEme? a target—probg _|nC|dence
the cost of the experiment. matrix H = (H;j) by H;; = 1 if target li hybridizes to

Now assume that target and targets are simultaneously probe candidatg;, and H;; := O otherwise. The design
in the sample. In this case all three probes p» and pa matrix D is t_he sub-matn_x oH thaf[ contains tho§e columns
hybridize. This situation cannot be distinguished from thecqrrespondmg t(.) probesmcluded inthe final designbgo=

1if targets; hybridizes to the selected probe.

situation where only; is in the sample. As a remedy, we Th  of probes hvbridizing to t ‘e the ind ¢
could take all the probeg;, . .., pg. It can easily be checked € Set ot probes ny ,r' 1zIng o_argem.e. € Index se
f non-zero entries in rowof the incidence matrixo (or H),

that for each subset of two targets the hybridization patterr? NP .
is different from every other subset of cardinality one or two.'s denoted byP (7). Similarly, T (j) denotes the set of target

Taking all the probes is, however, not necessary: we do notcguences probe; hybridizes to, or equivalently, the index

lose resolution using only probes, pa, ps, ps and ps. se;otzlnon-z;ozeonégezm cqtl)urr)r:)f ?h istic that all th
Generally itis clear that taking all probes results in the best chliepetal. ( ) describe a fast heuristic that allows the

possible separation between all subsets. However, for a sm&Pmputation of a good design, and we describe it shortly:

number of targets in the sample, say three or four, we can pggmNiTION 1 (d-separability). Let S and T betwo different
often achieve the same quality with a (substantially) smallearget sets. Probe p separates and T if p € P(S)AP(T),
number of probes. . i.e.if p hybridizesto either S or T, but not to both (A denotes

In addition to the difficulty illustrated above, the problem symmetric set difference). Target sets S and T ared-separable

is aggravated by the presence of errors. Usually the falsgf at |east d probes separatethem, i.e. if |[P(S)AP(T)| > d.
positive error ratef,, (i.e. the experiment reports a hybridiza-

tion although there should be none) and the false-negative rateConsider the example in Table 1. According to the above

. (i.e. the experiment should report a hybridization but doeglefinition the set§ = {¢1, 2} andT = {r3,14} are 2-separable

not) are up to 5%. As a remedy it is customary to build somelsing a subset of the nine probes (g2gand po).

redundancy into the design; e.g. we demand that two targets The following procedure is proposed to greedily compute a

are separated by more than one probe and that each tardggsign that guaranteésseparability for all pairs of targets if

hybridizes to more than one probe. possible. Note that due to the greedy nature of this algorithm,
Moreover, itis not trivial to compute the target—probe incid- the chosen design is not guaranteed to be minimal.

ence matrixH in the beginning. Among the potentially very

large set of possible non-unique probes, only a fraction sat-

isfies the typical restrictions used for oligonucleotide probe :

selection. For instance, all probes should exhibit the same ;rﬁ?]etr;; empty set, by calling Separeite}, {, ) for

hybridization affinity, expressed as the Gibbs free energy ‘ ]

ofthe probe—target duplex, ata given temperature and salt con-(2) Ensure thatall pairs of targets are separated by adeast

centration. The probes should neither be self complementary ~ ©ligos by calling Separatg;}, {ri},d) forall 1 < i <

nor should they cross-hybridize. Other constraints are pos- i <m.

sible (e.g. Wang and Seed, 2003). In this paper, we use the(3) Randomly pick a numbey of additional pairs of tar-

method proposed by Rahmann (2002) to derive the initial get setsS and T and d-separate each pair by calling

target—probe incidence matriéf. We emphasize, however, SeparateS, T,d). The parametetV can be chosen

that our results do not depend on this choice. The aim of according to the time available to refine the design.

Problem Definition. We denote then target sequences by

(1) Add probes until every target is covered by at leAst
probes, i.e. every singleton target &g} is d-separated
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The procedure Separate T,d) ensuresi-separation ofS refer to as the master ILP:
andT, or produces a warning if the candidate set allows only

d’-separation for somé’ < d. n
min > " x; (master ILP)
Separates, T, d) j=1
Add oligos to the current partial desighto d-separates n
andT S.t.ZH,'ij‘ > Cmin VieM,
(1) LetC := P(S)AP(T) j=1
(2) PartitionC intoC = Cp U C’, whereCp :=CnN n
D, and C’ contains the separating oligos not yet Z |Hij — Hijlxj > hmin V(i k) e P,
included inD j=1
(3) if |Cp| = d thenreturn (nothing to do) x; €0, 1) Vi=1,....n

(4) if|C’| < (d —|Cp|) thenwarn ‘Can only(|Cp| +
|C’|) separateS and T’

(5) Add thed — |Cp| highest-quality probes from’
toD

Note that it can be easily checked whether it is possible to
d-separate all pairs of targets. If not, then the solution set of
the above ILP is empty. As a remedy, we consider a variation

Thi his simpl d tical. H . of the problem: we add a sufficiently large numbes m -
IS approach IS simple and very practical. HOWever, sinc aX{cmin, hmin} Of unigue virtual probes that are only chosen

a design for a microarray is only done once, the time spent tﬂ it is not possible to do the separation with the original set

compute the design is far less crucial than the size and qualitgf candidate probes. We ensure this by setting the objective

of the design, i.e. the number of probes it contains (the fewe]r nction coefficients of the virtual probes to a large number

ter:(?OESetter), and its decoding capabilities in the presence og, i.e. we change the objective in the master ILP to

In order to reduce the number of probes in the design, we .
propose an approach based on Integer Linear Programming . ' _
(ILP) that guaranteeg-separability for each pair of targets min X;x-’ +C kzlx-’
as well as each pair of small target groups using the minimal /= =t
number of probes. ) )

Note that this is quite different from the ILP approach takenand replace: by n + [ in the constraints of the above ILP.

by Rash and Gusfield (2002) that addressesadifferentproblehll?“’ing added _the virtual oligonucleotides we can now deal
and considers only a pairwise separation of targets. with input matricest/ that do not allow/-separability.
The master ILP guarantees the pairwise separation of all tar-

gets similar to the greedy heuristic. Solving the ILP, however,
2 ILP FORMULATION leads to the minimal number of oligonucleotides necessary to

. o ) ) dothis. Inthe experimental section we show that the difference
PrOBLEM 1. Given a target-probe incidence matrix H With i the number of oligonucleotides can be substantial.

non-unique probes and two parameters minimum coverage  \ye do not only want to guaranteeseparability between
¢min @nd minimum Hamming distancémin, find a minimal  air5 of targets but between pairs of small target groups. Given
set of probes, such that all targetsare covered by at least cmin 5 set of targetss (group), we denote by’ the vector that
probes and such that ‘3” targets are separated with Hamming  yegyits from applying the logicdlR to the rows inS. Now,
distance at least /imin ™ assume we have a collectichc {S | S ¢ M} of subsets
of them targets. Then our goal is to guarantee the Hamming
It can be shown that Problem 1 is NP-hard using a reductiogistance constraint for the-vectors of all pairgs, 7} € (g)
from the set cover problem. We formulate the problem as avith S N T = @. We call these additional requirements group
variation of a set cover ILP. Let;, j € N, be a set of binary  constraints.
variables withx; = 1 if probep; is chosen and 0 otherwise, Enumerating all pairs of small subsets and adding the
and letP := (fg) ={{i,k}eZxZ|1<i<k<m}be corresponding group constraints to the ILP is not feasible,
the set of 2-subsets of target indices. Then the problem can l&s already noted by Schliepal. (2003). Hence we propose a
formulated as the following integer linear program which wecutting plane approach: whenever we have a feasible solution
to the master ILP, we check for violated group inequalities
and add them only if needed. This leads to a branch-and-cut
algorithm (e.g. Wolsey, 1998), a linear programming-based

IThe coverage constraints are dominated by the distance constraints if waranch and bound t?Chnique for S(?lVing mixed infcgger linear
add an empty target. programs by dynamically adding violated inequalities (cuts).

n+l

)
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o9 cannot be one if or T contain a target that hybridizes to
max » (0¥ +0}) (slave ILP) ofigonucleotidej.
jex Similarly, (4) and (5) express that,df' = 1, at least one
stod<1_s target in bothS and T must hybridize toj. Finally, (6) and
I = ! (7) avoidS = ¥ andT = @. Note that it is easy to limit the
VieX, YieM:H;=1 (2) cardinalities ofS andT by adding the inequaliti€s_; s; < c1
and)_, 1; < ¢ for some constanis; andcs.

o <1-1
_ _ . LEmMA 1. Afeasiblesolution (s, #,0°, o1) of theslave ILP
VieX, VieM: H;=1 () for a partial design characterized by X corresponds to two
0} < Z Hijsi VjeXx (4) disiunct groups of targets, S and 7. Furthermore, the value
ieM
h=|X|=Y (a0 +0}),
of < Z H;jt; VjeX (5) jex
ieM
) is equal to the Hamming distance of S and T with respect
o} < Y s viex (6) ox.
i:H;=0
0 ' The proof of the above lemma is omitted in this extended
o< Y 4 vieX (7) abstract.
i:H;j=0 If & is smaller than the minimum required Hamming
si+t <1 VieM 8) distancehnmin, we have found a violated group inequality,
namely
0<o)<1 VieX (9 o
w7 — w: |x; = hmin.
0O<ol<1 VieX (10) /X_; Jo =
si €{0,1} VieM (11) We add this inequality to the master ILP, solve it again,
t €10,1) vieM (12) @and iterate the process. If we do not find further violated
inequalities, we have solved the group separation problem
Fig. 1. The slave ILP. and kn.o_w that our §ele(_:tion of oligongclgotides is well-suited
to additionally distinguish between similar groups of targets
that might be present in the sample.
2.1 Findingviolated group inequalities 3 EXPERIMENTAL VALIDATION

The mainidea of our approach is toiteratively construct a mosg
violated group constraint by looking at our current selection
of probes. More precisely, lat* be a solution vector of the
master ILP and leX = {j | x;’.‘ = 1}, i.e. the index set of the

chliepet al. (2003) tested their greedy heuristic on a set of
1230 28S rDNA sequences from different organisms present
in the Meiobenthos (Markmann, 2000). The set contains

. . redundancies and many close homologs, so the sequences
curr%ntly chosen ollgongclgotld%s. Further, for atargebset \ ere clustered at 99% sequence identity over at least 99%
letw”|x denot_e the re§trlctlon @§° to the columns ".X We of the sequence length, and a representative for each cluster
§0Ive anoth_er integer linear program, the_slave ILPin F|gure J\Nas picked arbitrarily. This procedure results in a test set of

in order to find target group$and?” for which the Hamming 679 target sequences. We have access to this dataset and report

i s T\, i .
dls_i_tsm?n?bf t'ﬁ( aTde II_XPIis tt)elon thte\t/ihf(t%ﬁh(\)/'ﬂrrrlrgl vectordn the results. Additionally, in order to evaluate the benefits

€aimofthe slave s to select ( athevariable veclors ¢ , - new method more systematically, we also generate arti-
s andt) two sets of targetsS(andT') that yield a maximally

. : : . ficial datasets and compare the results of our method against
violated group inequality. In other words, the ILP tries to P g

create two groups thatresemble each other as much as possigllg result of the greedy heuristic.
after applying the logicaDR operation. 3.1 Generating artificial data

Variableso? and o} model the similarity ofS and7 at 311 Generating sequence families To generate artificial
positionj (the column ofH corresponding to thg-th oligo-  gata that closely models homologous sequence families, we
nucleotide), i.e0? = 1iff both »f andw! are equal to zero yse the REFORM (Random Evolutionary FORests Model)
ando! = 1iff both values are equal to one. Besides the trivialsoftware (http://www.molgen.mpg.de/~rahmann) that allows
constraints (9)—(12) and inequality (8), which kegpgnd7  to define arbitrary sets of evolutionary trees (‘evolutionary
disjoint, we have three main classes of inequalities: The firstorests’) with either random or pre-defined root sequences.
class, given by inequalities (2) and (3), models the fact thaThe sequences are evolved from the root through internal
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(b) has three levels of internal nodes below the root for a total
of 4416+ 64 internal nodes. Starting with the root, each
3 internal node has four children. The distance between adja-
cent nodes corresponds to= 1% of expected mutations.
Each internal node on the third level has four leaf children at
0.2 a distance of = 0.1 for a total of 256 leaves with different
0.2 distances to each other (0.2, 2.2, ...). The leaf sequences are
‘ subsequently used for probe candidate selection.
In the second model, all global parameters are as in the
256 leaves 400 leaves first model, and the sequences consist of a single segment
of average length 1000 nt. The topology differs considerably
Fig. 2. The two evolutionary tree models used for sequence familyfrom the first model: The tree consists of a linear chain of
generation. Branch lengths are indicated next to sample branche$00 internal nodes (including the root) 3 time units apart;
The 256 respective 400 leaf sequences were taken as family mentwo ‘cherries’ with branch lengths of 0.2 are attached to each
bers. In (a) not all children of the nodes are shown. internal node (Fig. 2b) for a total of 400 leaves.

These two particular model topologies were chosen because

nodes to the leaves along the branches of the tree for a tlrr%ﬁey produce difficult sets of very similar target sequences

proportional to the branch lengths, and may consist of seve : " .
o : ; at cannot be easily separated with unique probes. Model (a)
segments. For each segmentitis possible to specify a separate _ - . . . .
. is strictly hierarchical, while model (b) has an overall linear
evolutionary model.

The nucleotide substitution model is given as an evolution-StrUCture'

ary Markov process (EMP); e.g. as the simple model by Juke8.1.2 Generating probecandidates To generate probe can-
and Cantor (1969) that assigns equal probabilities to all mutedidates for each of the 10 families (5 instances of each model),
tion types. Alternatively it can be specified as any valid ratewe use the Promide software (Rahmann, 2003a,b). Probe can-
matrix Q = (Qi;) = Owith Q;; = —>_,; Qi; generating didates are selected to be between 19 and 21 nt long and have
a Markov process (far # j, Q;; is the mutation raté — j,  a stability (Gibbs energy) 0£20 to—19.5 kcal/mol at 40C
wherei andj are different nucleotide$p;;| then measures and 0.075 M [N&] according to the Nearest Neighbor model
the overall mutation rate away from Branch lengths are with parameters from SantalLucia (1998).
measured in percentage of expected mutations). We keep probes that occur as exact substrings in up to 50
An indel model is placed on top of the substitution procesfamily members. If, however, a probe candidathas a long
by specifying a deletion rate, an insertion rate, an indel lengtitommon substring (at leagb| — 3 nt with another family
distribution and a nucleotide distribution of inserted residuesmember sequence’, but does not occur exactly in it, we
During sequence evolution along a branch, at each position afiscard this candidate because we cannot make a reasonably
the parent sequence, the probability of deleting one or severagkrtain binary decision: Cross-hybridization may or may not
characters is given by the product of the branch length, the rekausep to show a signal whert is present in a sample. The
ative speed for the current segment, and the deletion rate. Thiecision to keep only candidates where a clear decision is pos-
length of the gap is then drawn from the specified gap lengtlsible was made to keep the false-positive and false-negative
distribution. A similar rule is applied to inserts. Substitutions error levels reasonably low.
are only computed for non-deleted positions, but inserts can We found that good probe candidates frequently occur in
follow immediately after deletions. clusters in the target sequences; probes in the same cluster
For our experiments, we used two different forest modelsend to have the same properties. If this happens, only one
(Fig. 2). From each model, five independent test sets wereandidate from each cluster is selected.

enerated.
J 3.2 Evaluating the selection

The first model produces a family of 256 sequences of aveMinimizing the number of probes is an obvious objective
age length 1000 nt. The root sequence consists of a randofanction. In the presence of errors the question is, however,
sequence of length 1000 nt with uniform nucleotide distribu-whether or not we lose our capability to decode the experi-
tion. It is split into five segments of equal size with relative ment if we reduce the size of the design. In order to check this
evolutionary speeds of 0.9, 0.95, 1, 1.05, and 1.1. Substiwe use the method proposed by Schigpl. (2003):
tutions are generated according to the Jukes—Cantor model. The performance of a design is measured by its ability to
The global delete and insert rates are set to 0.005, and tteecode experiments even if multiple targets are present in a
distribution of the gap lengths is given by the probability vec-sample and the error rates in the hybridization experiments are
tor proportional ta8, 1,4, 2,1,0.5,0.25,0.125,.). Inserted  large. As iterating over all possible sets of targets is infeasible
residues are drawn from the uniform distribution. The treethe following Monte Carlo approach was used.
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We randomly choose a set bftargets, the true positives. Table2. Foreach artificial dataset (a)1 to (b)5 and for the Markmann (2000)
Tha 5, we assume thal our ardicil sample o be analyzefeioeiis ins 08, 0 S Siows B e e o
gto?ItrzltnStheeagzglgtﬁzrgreetstg:ttl:g )O/;[glilrss I:Iee(?zliTICt|l:lgpeer£:)]‘T: Sdesign heuristic and the ILP approach, using pairwise separation only
the incidence of targets and probes—the set of probes which
all should hybridize to our sample. This gives us a set of true’€t =  #cand  Greedy  ILPn nratio 1 ratio
positive probes, the ones hybridizing to a chosen target, and
true negative probes, the ones which do not. (a); ;gg ;ggi ﬂg? (j(z)zf’) gcl)g (123") ;i; g'i

Errors are introduced by independently changing result valg 3 256 2871 1175 E410/3 516 518‘;3 2.28 0.25
ues fortrue-positive probes to negative with probabifitand (@)4 256 2954 1169 (40%) 540 (18%) 2.17 0.17
for true negative probes to positive with probabilify. This ~ (@)5 256 2968 1175(40%) 504 (17%) 2.33 0.24
noisy result is used as input to the MCMC-based decodingn)1 400 6292 1908 (30%) 879 (14%) 2.17 0.02
procedure described by (Schliepal., 2003). (b)2 400 6283 1885(30%)  938(15%) 2.01 0.02

The result of the decoding is a sorted list of the most prob{P) 3~ 400 6311 1895(30%) 891 (14%) ~ 2.13 0.6
able true-positive targets. To estimate the performance of 288 Z§§§ 1232 ggofﬁi gig 82;3 igg 8.%
design we repeat the process for a large number of randogyy 679 15139 3851 (25%) 3158 (21%) 1.22 0.08
target sets for different choices of (smatl)and count the
fraction of true-positive targets appearing at rank 1,2,.3, Percentages represent the number of selected probes in relation to the number of probe
of the result list. A design exhibits maximal performance if ﬁi”edﬁitifggzﬁoﬁﬁbe rai@reecy/n1Lp aNd the ratidgreeay/ nLp OF the required design
the proportion of true-positive targets among thekdpund '

by the decoding procedure is unity when choostagized  Table3. Decoding results for the greedy heuristic design and the ILP design

samples. on the Markmann (2000) dataset (M)
Clearly, the performance must degradé gsows. Even for
smallk maximal performance cannot be expected for two reaspgs, 1 2 3 4 5

ons. First, in the presence of reasonably large error rates, say
5%, the number of true-positive probes is vastly outnumberegeuristic design for (M)

by the number of false-positive ones. Second, the decoding Top 1 0.92 - - - -
procedure is stochastic and hence not guaranteed to give al°p 2 0.98 0.93 N - -
erfect result Top 3 0.98 0.96 0.94 - -
P ) : " Top 4 1.00 0.98 0.95 0.87 -
We propose to use the proportion of true positives among o, 5 1.00 0.98 100 0.90 0.92
the topk + 1 targets fok-cardinality samples up to a maximal  Top 10 1.00 0.98 1.00 0.94 0.98
value ofk suggested as realistic by the specific application. |_p design for ()
Top 1 0.86 — - — —
4 RESULTS Top 2 0.90 0.92 - - -
We report on our results using the Markmann (2000) dataset 1°P 3 0.96 0.96 091 - -
; : ; Top 4 1.00 0.97 0.98 0.88 -
(679 28S rDNA targets from different organisms presentinthe - o 1.00 0.97 0.99 0.95 083
Meiobenthos) denoted (M), as well as the ten artificial data top 10 1.00 0.99 1.00 1.00 0.92
sets described in Section 3.1, denoted (a)1 to (a)5, and (b)1

to (b)5.

Designs with minimum coverage 10 and minimum At the time of submission we have not yet computed the
Hamming distance 5 are generated with the greedy heugroup separations for all cases (this takes more implement-
istic (a part of the Promide package) and by the ILPational effort and will be completed in the near future),
approach described in Sect. 2, utilizing version 8.1 of thepreliminary results indicate however only a moderate increase
commercial CPLEX software with standard settings (http://in the number of oligonucleotides needed.
www.ilog.com/products/cplex). The question remains, whether the reduction in the number

The results are shown in Table 2. Naturally, the heuristicof oligonucleotides has any impact on the ability to decode the
runs faster, but it also generates a design that is often momxperiments. We cannot expect to do better than the heuristic
than twice as large than the optimal design found with the ILRexcept for random fluctuations in the Monte Carlo algorithm),
approach. but we expect to be almost as good with the minimal probe

This is a general trend observed in the real and the artifiset as with the much larger heuristic probe set.
cial datasets. Our approach significantly reduces the amountWe chose a false-positive and false-negative rate of 5% and
of oligonucleotides needed in the design at the cost of aman the decoding for each number of positives 50 times with
increased running time. The absolute running times are in thdifferent randomly chosen targets inthe sample. Table 3 shows
range of 50-1700 s and hence quite practical. the result of the decoding procedure for dataset (M), Table 4
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Table 4. Decoding results for artificial dataset (a)1 5 CONCLUSIONS
We have presented an exact approach to the problem of
Pos. 1 2 3 4 5 selecting non-unique probes. We have formulated the problem
as aninteger linear program and have developed a branch-and-
Heuristic design for (a)1 cut formulation for solving the group separation problem in
Top1l 0.98 - - - - the general case.
182; 8-32 i-gg 056 - - Our preliminary implementation is capable of separat-
Top 4 0.98 100 100 0.93 B ing all pairs qf targets opt|_mally in reasonable computation
Top 5 0.98 1.00 1.00 0.95 og2 time and achieves a considerable reduction of the numbers
Top 10 0.98 1.00 1.00 0.97 091  of oligonucleotides needed compared to a previous greedy
ILP design for (a)1 algorithm. The drastic size reduction has only a mild effect
Top1 1.00 - - - - on the decoding capabilities of the design.
Top 2 1.00 0.99 - - - These results reinforce the findings of Schiéepl. (2003),
1822 iz% g:gg g:gg _0.92 - namely that probe selection with non-unique probes is cap-
Top 5 1.00 0.99 0.97 0.93 oe able of accurately assessing the presence of small target sets
Top 10 1.00 0.99 0.97 0.97 0.75 even when minimizing the cardinality of the probe set. Our
approach already surpasses optimization approaches to probe
selection (Rash and Gusfield, 2002), as we can cope with
Table 5. Decoding results for artificial dataset (b)3 multiple targets simultaneously present in a sample. This will
almost always be the case for real biological applications.
Pos. 1 5 3 4 5 Experiments with a prototypical group separation imple-
mentation let us conjecture that enforcing the separability
Heuristic design for (b)3 between small groups will only add a small number of nucle-
Top 1 0.98 - - - - otides while improving the decoding capabilities. We plan to
Top 2 1.00 0.99 - - - finish the implementation of the group separation algorithm
Top3 1.00 0.99 096 - - in the near future and to speed up our initial implementa-
Top 4 1.00 0-99 0-9 0-96 o tion. Especially, we believe that using the slave ILP within
Top5 1.00 0.99 0.96 0.98 0.78 ' | _ X
Top 10 1.00 0.99 0.96 0.98 0.90 a real branch-and-cut framework—i.e. separating violated
ILP design for (b)3 inequalities also from fractional solutions at each node of
Top 1 0.98 - - - - the branch-and-bound tree—will reduce the computation time
Top 2 1.00 1.00 - - - considerably, making optimal group separation up to small
igp i 1-88 1-% 8-3; 006 - cardinalities viable for practical use.
TOE 5 100 100 0.99 0.97 0.70 The software will be made available to the community.
Top 10 1.00 1.00 0.99 0.98 0.84
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