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ABSTRACT
Motivation: Besides their prevalent use for analyzing gene
expression, microarrays are an efficient tool for biological,
medical and industrial applications due to their ability to assess
the presence or absence of biological agents, the targets, in
a sample. Given a collection of genetic sequences of targets
one faces the challenge of finding short oligonucleotides, the
probes, which allow detection of targets in a sample. Each
hybridization experiment determines whether the probe binds
to its corresponding sequence in the target. Depending on the
problem, the experiments are conducted using either unique
or non-unique probes and usually assume that only one target
is present in the sample. The problem at hand is to compute
a design, i.e. a minimal set of probes that allows to infer the
targets in the sample from the result of the hybridization experi-
ment. If we allow to test for more than one target in the sample,
the design of the probe set becomes difficult in the case of
non-unique probes.
Results: Building upon previous work on group testing for
microarrays, we describe the first approach to select a minimal
probe set for the case of non-unique probes in the presence of
a small number of multiple targets in the sample.The approach
is based on an ILP formulation and a branch-and-cut algorithm.
Our preliminary implementation greatly reduces the number of
probes needed while preserving the decoding capabilities.
Availability: http://www.inf.fu-berlin.de/inst/ag-bio
Contact: reinert@inf.fu-berlin.de

1 INTRODUCTION
Microarrays are a widely used tool as they provide a cost-
efficient way to determine levels of specified RNA or DNA
molecules in a biological sample. Typically, one measures the
amount of gene expression in a cell by observing hybridization
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Table 1. Target-probe incidence matrixH

p1 p2 p3 p4 p5 p6 p7 p8 p9

t1 1 1 1 0 1 1 0 0 0
t2 1 0 1 1 0 0 1 1 0
t3 0 1 1 1 0 1 1 0 1
t4 0 1 0 0 1 0 1 1 1

of mRNA to different probes on a microarray, each probe
targeting a specific gene. A different and likewise important
application, arising for example in medicine, environmental
sciences, industrial quality control or biothreat reduction, is
the identification of biological agents in a sample.

This wide range of applications leads to the same meth-
odological problem: to determine the presence or absence of
targets—viruses or bacteria—in a biological sample.

Our paper focuses on oligonucleotide arrays. To illustrate
the general approach let us assume we would like to identify
virus subtypes in a sample. If we test whether a number of
probes, i.e. short oligonucleotides of size 8–25, hybridizes to
the genome of the virus, we can infer presence or absence of
the virus if the hybridization pattern is unique among all vir-
uses possibly contained in the sample. This problem is readily
extended to the case of several simultaneously present viruses
where we want to determine those which are indeed contained
in the sample.

In the case of unique probes, neglecting errors, this exten-
sion is trivial, since we will exactly observe the union of those
probes that hybridize to the viruses in the set. However, find-
ing unique probes is often difficult, e.g. in the case of closely
related virus subtypes. One way around this basic problem is
to devise a method which can make use of non-unique probes:
probes which hybridize to more than one target.

Assume we are given the target–probe incidence matrix
H = (Hij ) as shown in Table 1, which contains a 1 ifprobe
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j hybridizes to targeti. Then we will observe the hybridiza-
tion of all probes incident to any target present in the sample,
i.e. the logicalOR of the row vectors. If the probe set is not
carefully chosen, this can easily lead to situations where we
cannot resolve the experimental result.

We illustrate the problem using the example in Table 1.
We have four targetst1, . . . , t4 and a total of nine probes
p1, . . . ,p9. The target–probe incidence matrixH indicates
which probe hybridizes to which target.

Assume we are given a sample and only one oft1, . . . , t4 is in
the sample. The goal is now to choose a suitable design matrix
D, i.e. to select a minimal set of probes that allows us to infer
the presence of a single target. In our example it is sufficient
to use probesp1,p2 andp3 for detecting the presence of a
single target (e.g. for targett2 probesp1 andp3 hybridize,
while p2 does not). Minimizing the number of probes is a
very reasonable objective function, since it is proportional to
the cost of the experiment.

Now assume that targett2 and targett3 are simultaneously
in the sample. In this case all three probesp1,p2 and p3

hybridize. This situation cannot be distinguished from the
situation where onlyt1 is in the sample. As a remedy, we
could take all the probesp1, . . . ,p9. It can easily be checked
that for each subset of two targets the hybridization pattern
is different from every other subset of cardinality one or two.
Taking all the probes is, however, not necessary: we do not
lose resolution using only probesp1,p4,p5,p6 andp8.

Generally it is clear that taking all probes results in the best
possible separation between all subsets. However, for a small
number of targets in the sample, say three or four, we can
often achieve the same quality with a (substantially) smaller
number of probes.

In addition to the difficulty illustrated above, the problem
is aggravated by the presence of errors. Usually the false-
positive error ratefp (i.e. the experiment reports a hybridiza-
tion although there should be none) and the false-negative rate
fn (i.e. the experiment should report a hybridization but does
not) are up to 5%. As a remedy it is customary to build some
redundancy into the design; e.g. we demand that two targets
are separated by more than one probe and that each target
hybridizes to more than one probe.

Moreover, it is not trivial to compute the target–probe incid-
ence matrixH in the beginning. Among the potentially very
large set of possible non-unique probes, only a fraction sat-
isfies the typical restrictions used for oligonucleotide probe
selection. For instance, all probes should exhibit the same
hybridization affinity, expressed as the Gibbs free energy�G

of the probe–target duplex, at a given temperature and salt con-
centration. The probes should neither be self complementary
nor should they cross-hybridize. Other constraints are pos-
sible (e.g. Wang and Seed, 2003). In this paper, we use the
method proposed by Rahmann (2002) to derive the initial
target–probe incidence matrixH . We emphasize, however,
that our results do not depend on this choice. The aim of

this paper is to compute the design matrixD given some
target–probe incidence matrixH .

While we strive to minimize the number of probes, we do
not want to lose the ability to decode, i.e. we want to be able
to infer the original targets even in the presence of errors.

The three steps of (1) computing the target–probe incid-
ence matrix, (2) computing a suitable design matrixD and
(3) decoding the result were recently addressed by Schliep
et al. (2003). In this work, we address the second step, the
computation of the design, and use for the first and third step
the methods proposed in the above-mentioned paper, adopting
its notation to a large extent. Having illustrated the problem
we formalize it now.

Problem Definition. We denote them target sequences by
ti (i ∈ M := {1, . . . ,m}) and then candidate probes bypj

(j ∈ N := {1, . . . ,n}), and define a target–probe incidence
matrix H = (Hij ) by Hij := 1 if target ti hybridizes to
probe candidatepj , and Hij := 0 otherwise. The design
matrixD is the sub-matrix ofH that contains those columns
corresponding to probes included in the final design. SoDij =
1 if targetti hybridizes to the selected probepj .

The set of probes hybridizing to targetti , i.e. the index set
of non-zero entries in rowi of the incidence matrixD (or H ),
is denoted byP(i). Similarly, T (j) denotes the set of target
sequences probepj hybridizes to, or equivalently, the index
set of non-zero entries in columnj of D.

Schliepet al. (2003) describe a fast heuristic that allows the
computation of a good design, and we describe it shortly:

Definition 1 (d-separability). Let S and T be two different
target sets. Probe p separatesS and T if p ∈ P(S)�P(T ),
i.e. if p hybridizes to either S or T , but not to both (� denotes
symmetric set difference). Target sets S and T are d-separable
if at least d probes separate them, i.e. if |P(S)�P(T )| ≥ d.

Consider the example in Table 1. According to the above
definition the setsS = {t1, t2} andT = {t3, t4} are 2-separable
using a subset of the nine probes (e.g.p1 andp9).

The following procedure is proposed to greedily compute a
design that guaranteesd-separability for all pairs of targets if
possible. Note that due to the greedy nature of this algorithm,
the chosen design is not guaranteed to be minimal.

(1) Add probes until every target is covered by at leastd

probes, i.e. every singleton target set{ti} is d-separated
from the empty set, by calling Separate({ti}, {},d) for
all i ∈ M.

(2) Ensure that all pairs of targets are separated by at leastd

oligos by calling Separate({ti}, {ti ′ },d) for all 1 ≤ i <

i′ ≤ m.

(3) Randomly pick a numberN of additional pairs of tar-
get setsS andT andd-separate each pair by calling
Separate(S,T ,d). The parameterN can be chosen
according to the time available to refine the design.

i187



G.W.Klau et al.

The procedure Separate(S,T ,d) ensuresd-separation ofS
andT , or produces a warning if the candidate set allows only
d ′-separation for somed ′ < d.

Separate(S,T ,d)

Add oligos to the current partial designD to d-separateS
andT

(1) LetC := P(S)�P(T )

(2) PartitionC into C = CD ∪ C′, whereCD := C ∩
D, andC′ contains the separating oligos not yet
included inD

(3) if |CD| ≥ d then return (nothing to do)
(4) if |C′| < (d − |CD|) then warn ‘Can only(|CD| +

|C′|) separateS andT ’
(5) Add thed − |CD| highest-quality probes fromC′

to D

This approach is simple and very practical. However, since
a design for a microarray is only done once, the time spent to
compute the design is far less crucial than the size and quality
of the design, i.e. the number of probes it contains (the fewer
the better), and its decoding capabilities in the presence of
errors.

In order to reduce the number of probes in the design, we
propose an approach based on Integer Linear Programming
(ILP) that guaranteesd-separability for each pair of targets
as well as each pair of small target groups using the minimal
number of probes.

Note that this is quite different from the ILP approach taken
by Rash and Gusfield (2002) that addresses a different problem
and considers only a pairwise separation of targets.

2 ILP FORMULATION
Problem 1. Given a target–probe incidence matrix H with
non-unique probes and two parameters minimum coverage
cmin and minimum Hamming distancehmin, find a minimal
set of probes, such that all targets are covered by at least cmin

probes and such that all targets are separated with Hamming
distance at least hmin

1.

It can be shown that Problem 1 is NP-hard using a reduction
from the set cover problem. We formulate the problem as a
variation of a set cover ILP. Letxj , j ∈ N , be a set of binary
variables withxj = 1 if probepj is chosen and 0 otherwise,
and letP := (

M
2

) = {{i,k} ∈ Z × Z | 1 ≤ i < k ≤ m} be
the set of 2-subsets of target indices. Then the problem can be
formulated as the following integer linear program which we

1The coverage constraints are dominated by the distance constraints if we
add an empty target.

refer to as the master ILP:

min
n∑

j=1

xj (master ILP)

s. t.
n∑

j=1

Hijxj ≥ cmin ∀i ∈ M,

n∑

j=1

|Hij − Hkj |xj ≥ hmin ∀(i,k) ∈ P ,

xj ∈ {0, 1} ∀j = 1, . . . ,n.

Note that it can be easily checked whether it is possible to
d-separate all pairs of targets. If not, then the solution set of
the above ILP is empty. As a remedy, we consider a variation
of the problem: we add a sufficiently large numberl := m ·
max{cmin,hmin} of unique virtual probes that are only chosen
if it is not possible to do the separation with the original set
of candidate probes. We ensure this by setting the objective
function coefficients of the virtual probes to a large number
C, i.e. we change the objective in the master ILP to

min
n∑

j=1

xj + C

n+l∑

k=n+1

xj (1)

and replacen by n + l in the constraints of the above ILP.
Having added the virtual oligonucleotides we can now deal
with input matricesH that do not allowd-separability.

The master ILP guarantees the pairwise separation of all tar-
gets similar to the greedy heuristic. Solving the ILP, however,
leads to the minimal number of oligonucleotides necessary to
do this. In the experimental section we show that the difference
in the number of oligonucleotides can be substantial.

We do not only want to guaranteed-separability between
pairs of targets but between pairs of small target groups. Given
a set of targetsS (group), we denote byωS the vector that
results from applying the logicalOR to the rows inS. Now,
assume we have a collectionS ⊂ {S | S ⊂ M} of subsets
of them targets. Then our goal is to guarantee the Hamming
distance constraint for theω-vectors of all pairs{S,T } ∈ (S

2

)

with S ∩ T = ∅. We call these additional requirements group
constraints.

Enumerating all pairs of small subsets and adding the
corresponding group constraints to the ILP is not feasible,
as already noted by Schliepet al. (2003). Hence we propose a
cutting plane approach: whenever we have a feasible solution
to the master ILP, we check for violated group inequalities
and add them only if needed. This leads to a branch-and-cut
algorithm (e.g. Wolsey, 1998), a linear programming-based
branch and bound technique for solving mixed integer linear
programs by dynamically adding violated inequalities (cuts).
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max
∑

j∈X

(σ 0
j + σ 1

j ) (slave ILP)

s. t.σ 0
j ≤ 1 − si

∀j ∈ X, ∀i ∈ M : Hij ≡ 1 (2)

σ 0
j ≤ 1 − ti

∀j ∈ X, ∀i ∈ M : Hij ≡ 1 (3)

σ 1
j ≤

∑

i∈M

Hij si ∀j ∈ X (4)

σ 1
j ≤

∑

i∈M

Hij ti ∀j ∈ X (5)

σ 0
j ≤

∑

i:Hij ≡0

si ∀j ∈ X (6)

σ 0
j ≤

∑

i:Hij ≡0

ti ∀j ∈ X (7)

si + ti ≤ 1 ∀i ∈ M (8)

0 ≤ σ 0
j ≤ 1 ∀j ∈ X (9)

0 ≤ σ 1
j ≤ 1 ∀j ∈ X (10)

si ∈ {0, 1} ∀i ∈ M (11)

ti ∈ {0, 1} ∀i ∈ M (12)

Fig. 1. The slave ILP.

2.1 Finding violated group inequalities
The main idea of our approach is to iteratively construct a most
violated group constraint by looking at our current selection
of probes. More precisely, letx∗ be a solution vector of the
master ILP and letX = {j | x∗

j ≡ 1}, i.e. the index set of the
currently chosen oligonucleotides. Further, for a target setS,
let ωS |X denote the restriction ofωS to the columns inX. We
solve another integer linear program, the slave ILP in Figure 1,
in order to find target groupsS andT for which the Hamming
distance ofωS |X andωT |X is below the thresholdhmin.

The aim of the slave ILP is to select (via the variable vectors
s andt) two sets of targets (S andT ) that yield a maximally
violated group inequality. In other words, the ILP tries to
create two groups that resemble each other as much as possible
after applying the logicalOR operation.

Variablesσ 0
j and σ 1

j model the similarity ofS and T at
positionj (the column ofH corresponding to thej -th oligo-
nucleotide), i.e.σ 0

j = 1 iff both ωS
j andωT

j are equal to zero

andσ 1
j = 1 iff both values are equal to one. Besides the trivial

constraints (9)–(12) and inequality (8), which keepsS andT

disjoint, we have three main classes of inequalities: The first
class, given by inequalities (2) and (3), models the fact that

σ 0
j cannot be one ifS or T contain a target that hybridizes to

oligonucleotidej .
Similarly, (4) and (5) express that, ifσ 1

j = 1, at least one
target in bothS andT must hybridize toj . Finally, (6) and
(7) avoidS = ∅ andT = ∅. Note that it is easy to limit the
cardinalities ofS andT by adding the inequalities

∑
i si ≤ c1

and
∑

i ti ≤ c2 for some constantsc1 andc2.

Lemma 1. A feasible solution (s, t ,σ 0,σ 1) of the slave ILP
for a partial design characterized by X corresponds to two
disjunct groups of targets, S and T . Furthermore, the value

h = |X| −
∑

j∈X

(σ 0
j + σ 1

j ),

is equal to the Hamming distance of S and T with respect
to X.

The proof of the above lemma is omitted in this extended
abstract.

If h is smaller than the minimum required Hamming
distancehmin, we have found a violated group inequality,
namely

n+l∑

j=1

|ωS
j − ωT

j |xj ≥ hmin.

We add this inequality to the master ILP, solve it again,
and iterate the process. If we do not find further violated
inequalities, we have solved the group separation problem
and know that our selection of oligonucleotides is well-suited
to additionally distinguish between similar groups of targets
that might be present in the sample.

3 EXPERIMENTAL VALIDATION
Schliepet al. (2003) tested their greedy heuristic on a set of
1230 28S rDNA sequences from different organisms present
in the Meiobenthos (Markmann, 2000). The set contains
redundancies and many close homologs, so the sequences
were clustered at 99% sequence identity over at least 99%
of the sequence length, and a representative for each cluster
was picked arbitrarily. This procedure results in a test set of
679 target sequences. We have access to this dataset and report
on the results. Additionally, in order to evaluate the benefits
of our new method more systematically, we also generate arti-
ficial datasets and compare the results of our method against
the result of the greedy heuristic.

3.1 Generating artificial data
3.1.1 Generating sequence families To generate artificial
data that closely models homologous sequence families, we
use the REFORM (Random Evolutionary FORests Model)
software (http://www.molgen.mpg.de/~rahmann) that allows
to define arbitrary sets of evolutionary trees (‘evolutionary
forests’) with either random or pre-defined root sequences.
The sequences are evolved from the root through internal
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Fig. 2. The two evolutionary tree models used for sequence family
generation. Branch lengths are indicated next to sample branches.
The 256 respective 400 leaf sequences were taken as family mem-
bers. In (a) not all children of the nodes are shown.

nodes to the leaves along the branches of the tree for a time
proportional to the branch lengths, and may consist of several
segments. For each segment it is possible to specify a separate
evolutionary model.

The nucleotide substitution model is given as an evolution-
ary Markov process (EMP); e.g. as the simple model by Jukes
and Cantor (1969) that assigns equal probabilities to all muta-
tion types. Alternatively it can be specified as any valid rate
matrix Q = (Qij ) ≥ 0 with Qii = − ∑

j �=i Qij generating
a Markov process (fori �= j , Qij is the mutation ratei → j ,
wherei andj are different nucleotides:|Qii | then measures
the overall mutation rate away fromi. Branch lengths are
measured in percentage of expected mutations).

An indel model is placed on top of the substitution process
by specifying a deletion rate, an insertion rate, an indel length
distribution and a nucleotide distribution of inserted residues.
During sequence evolution along a branch, at each position of
the parent sequence, the probability of deleting one or several
characters is given by the product of the branch length, the rel-
ative speed for the current segment, and the deletion rate. The
length of the gap is then drawn from the specified gap length
distribution. A similar rule is applied to inserts. Substitutions
are only computed for non-deleted positions, but inserts can
follow immediately after deletions.

For our experiments, we used two different forest models
(Fig. 2). From each model, five independent test sets were
generated.

The first model produces a family of 256 sequences of aver-
age length 1000 nt. The root sequence consists of a random
sequence of length 1000 nt with uniform nucleotide distribu-
tion. It is split into five segments of equal size with relative
evolutionary speeds of 0.9, 0.95, 1, 1.05, and 1.1. Substi-
tutions are generated according to the Jukes–Cantor model.
The global delete and insert rates are set to 0.005, and the
distribution of the gap lengths is given by the probability vec-
tor proportional to(8, 1, 4, 2, 1, 0.5, 0.25, 0.125,. . . ). Inserted
residues are drawn from the uniform distribution. The tree

has three levels of internal nodes below the root for a total
of 4+ 16+ 64 internal nodes. Starting with the root, each
internal node has four children. The distance between adja-
cent nodes corresponds tot = 1% of expected mutations.
Each internal node on the third level has four leaf children at
a distance oft = 0.1 for a total of 256 leaves with different
distances to each other (0.2, 2.2, …). The leaf sequences are
subsequently used for probe candidate selection.

In the second model, all global parameters are as in the
first model, and the sequences consist of a single segment
of average length 1000 nt. The topology differs considerably
from the first model: The tree consists of a linear chain of
100 internal nodes (including the root) 3 time units apart;
two ‘cherries’ with branch lengths of 0.2 are attached to each
internal node (Fig. 2b) for a total of 400 leaves.

These two particular model topologies were chosen because
they produce difficult sets of very similar target sequences
that cannot be easily separated with unique probes. Model (a)
is strictly hierarchical, while model (b) has an overall linear
structure.

3.1.2 Generating probe candidates To generate probe can-
didates for each of the 10 families (5 instances of each model),
we use the Promide software (Rahmann, 2003a,b). Probe can-
didates are selected to be between 19 and 21 nt long and have
a stability (Gibbs energy) of−20 to−19.5 kcal/mol at 40◦C
and 0.075 M [Na+] according to the Nearest Neighbor model
with parameters from SantaLucia (1998).

We keep probes that occur as exact substrings in up to 50
family members. If, however, a probe candidatep has a long
common substring (at least|p| − 3 nt with another family
member sequencet∗, but does not occur exactly in it, we
discard this candidate because we cannot make a reasonably
certain binary decision: Cross-hybridization may or may not
causep to show a signal whent∗ is present in a sample. The
decision to keep only candidates where a clear decision is pos-
sible was made to keep the false-positive and false-negative
error levels reasonably low.

We found that good probe candidates frequently occur in
clusters in the target sequences; probes in the same cluster
tend to have the same properties. If this happens, only one
candidate from each cluster is selected.

3.2 Evaluating the selection
Minimizing the number of probes is an obvious objective
function. In the presence of errors the question is, however,
whether or not we lose our capability to decode the experi-
ment if we reduce the size of the design. In order to check this
we use the method proposed by Schliepet al. (2003):

The performance of a design is measured by its ability to
decode experiments even if multiple targets are present in a
sample and the error rates in the hybridization experiments are
large. As iterating over all possible sets of targets is infeasible
the following Monte Carlo approach was used.
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We randomly choose a set ofk targets, the true positives.
That is, we assume that our artificial sample to be analyzed
contains each of thek targets but no others. Neglecting errors
at first, the design we are testing yields—recall, it specifies
the incidence of targets and probes—the set of probes which
all should hybridize to our sample. This gives us a set of true
positive probes, the ones hybridizing to a chosen target, and
true negative probes, the ones which do not.

Errors are introduced by independently changing result val-
ues for true-positive probes to negative with probabilityfn and
for true negative probes to positive with probabilityfp. This
noisy result is used as input to the MCMC-based decoding
procedure described by (Schliepet al., 2003).

The result of the decoding is a sorted list of the most prob-
able true-positive targets. To estimate the performance of a
design we repeat the process for a large number of random
target sets for different choices of (small)k and count the
fraction of true-positive targets appearing at rank 1, 2, 3,. . .

of the result list. A design exhibits maximal performance if
the proportion of true-positive targets among the topk found
by the decoding procedure is unity when choosingk-sized
samples.

Clearly, the performance must degrade ask grows. Even for
smallk maximal performance cannot be expected for two reas-
ons. First, in the presence of reasonably large error rates, say
5%, the number of true-positive probes is vastly outnumbered
by the number of false-positive ones. Second, the decoding
procedure is stochastic and hence not guaranteed to give a
perfect result.

We propose to use the proportion of true positives among
the topk+1 targets fork-cardinality samples up to a maximal
value ofk suggested as realistic by the specific application.

4 RESULTS
We report on our results using the Markmann (2000) dataset
(679 28S rDNA targets from different organisms present in the
Meiobenthos) denoted (M), as well as the ten artificial data
sets described in Section 3.1, denoted (a)1 to (a)5, and (b)1
to (b)5.

Designs with minimum coverage 10 and minimum
Hamming distance 5 are generated with the greedy heur-
istic (a part of the Promide package) and by the ILP
approach described in Sect. 2, utilizing version 8.1 of the
commercial CPLEX software with standard settings (http://
www.ilog.com/products/cplex).

The results are shown in Table 2. Naturally, the heuristic
runs faster, but it also generates a design that is often more
than twice as large than the optimal design found with the ILP
approach.

This is a general trend observed in the real and the artifi-
cial datasets. Our approach significantly reduces the amount
of oligonucleotides needed in the design at the cost of an
increased running time. The absolute running times are in the
range of 50–1700 s and hence quite practical.

Table 2. For each artificial dataset (a)1 to (b)5 and for the Markmann (2000)
meiobenthic data (M), the table shows the numberm of targets, the number
#cand of probe candidates, and the number of probesn chosen by the greedy
design heuristic and the ILP approach, using pairwise separation only

Set m #cand Greedyn ILP n n ratio t ratio

(a) 1 256 2786 1163 (42%) 503 (18%) 2.31 0.23
(a) 2 256 2821 1137 (40%) 519 (18%) 2.19 0.21
(a) 3 256 2871 1175 (41%) 516 (18%) 2.28 0.25
(a) 4 256 2954 1169 (40%) 540 (18%) 2.17 0.17
(a) 5 256 2968 1175 (40%) 504 (17%) 2.33 0.24

(b) 1 400 6292 1908 (30%) 879 (14%) 2.17 0.02
(b) 2 400 6283 1885 (30%) 938 (15%) 2.01 0.02
(b) 3 400 6311 1895 (30%) 891 (14%) 2.13 0.06
(b) 4 400 6223 1888 (30%) 915 (15%) 2.06 0.02
(b) 5 400 6285 1876 (30%) 946 (15%) 1.98 0.07
(M) 679 15139 3851 (25%) 3158 (21%) 1.22 0.08

Percentages represent the number of selected probes in relation to the number of probe
candidates. The probe rationGreedy/nILP and the ratiotGreedy/tILP of the required design
time are also shown.

Table 3. Decoding results for the greedy heuristic design and the ILP design
on the Markmann (2000) dataset (M)

Pos. 1 2 3 4 5

Heuristic design for (M)
Top 1 0.92 − − − −
Top 2 0.98 0.93 − − −
Top 3 0.98 0.96 0.94 − −
Top 4 1.00 0.98 0.95 0.87 −
Top 5 1.00 0.98 1.00 0.90 0.92
Top 10 1.00 0.98 1.00 0.94 0.98

ILP design for (M)
Top 1 0.86 − − − −
Top 2 0.90 0.92 − − −
Top 3 0.96 0.96 0.91 − −
Top 4 1.00 0.97 0.98 0.88 −
Top 5 1.00 0.97 0.99 0.95 0.83
Top 10 1.00 0.99 1.00 1.00 0.92

At the time of submission we have not yet computed the
group separations for all cases (this takes more implement-
ational effort and will be completed in the near future),
preliminary results indicate however only a moderate increase
in the number of oligonucleotides needed.

The question remains, whether the reduction in the number
of oligonucleotides has any impact on the ability to decode the
experiments. We cannot expect to do better than the heuristic
(except for random fluctuations in the Monte Carlo algorithm),
but we expect to be almost as good with the minimal probe
set as with the much larger heuristic probe set.

We chose a false-positive and false-negative rate of 5% and
ran the decoding for each number of positives 50 times with
different randomly chosen targets in the sample. Table 3 shows
the result of the decoding procedure for dataset (M), Table 4
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Table 4. Decoding results for artificial dataset (a)1

Pos. 1 2 3 4 5

Heuristic design for (a)1
Top 1 0.98 − − − −
Top 2 0.98 1.00 − − −
Top 3 0.98 1.00 0.99 − −
Top 4 0.98 1.00 1.00 0.93 −
Top 5 0.98 1.00 1.00 0.95 0.82
Top 10 0.98 1.00 1.00 0.97 0.91

ILP design for (a)1
Top 1 1.00 − − − −
Top 2 1.00 0.99 − − −
Top 3 1.00 0.99 0.95 − −
Top 4 1.00 0.99 0.97 0.92 −
Top 5 1.00 0.99 0.97 0.93 0.6
Top 10 1.00 0.99 0.97 0.97 0.75

Table 5. Decoding results for artificial dataset (b)3

Pos. 1 2 3 4 5

Heuristic design for (b)3
Top 1 0.98 − − − −
Top 2 1.00 0.99 − − −
Top 3 1.00 0.99 0.96 − −
Top 4 1.00 0.99 0.96 0.96 −
Top 5 1.00 0.99 0.96 0.98 0.78
Top 10 1.00 0.99 0.96 0.98 0.90

ILP design for (b)3
Top 1 0.98 − − − −
Top 2 1.00 1.00 − − −
Top 3 1.00 1.00 0.97 − −
Top 4 1.00 1.00 0.98 0.96 −
Top 5 1.00 1.00 0.99 0.97 0.70
Top 10 1.00 1.00 0.99 0.98 0.84

for a representative of the first artificial dataset (a), and Table 5
for a representative of the second artifical dataset (b). The
tables show fork true positives (first row) the percentage of
true positive targets found at the first position (top 1), among
the first two positions (top 2) etc. For ease of reading the best
values are in bold.

It can be clearly seen that the ILP solution—remember that
it contains often less than half of the oligonucleotides of the
heuristic solution—does still have excellent decoding capabil-
ities, indeed it is sometimes slightly better than the heuristic.
Also it can be seen that for five true positives the decoding
capability of our solution is indeed worse than that of the heur-
istic. This can be explained by the fact that we currently only
conduct the pairwise separation. Hence for largerk we have
more problems than the heuristic solution which has many
more oligonucleotides. We conjecture that these values will
become better once we implement the group separation.

5 CONCLUSIONS
We have presented an exact approach to the problem of
selecting non-unique probes. We have formulated the problem
as an integer linear program and have developed a branch-and-
cut formulation for solving the group separation problem in
the general case.

Our preliminary implementation is capable of separat-
ing all pairs of targets optimally in reasonable computation
time and achieves a considerable reduction of the numbers
of oligonucleotides needed compared to a previous greedy
algorithm. The drastic size reduction has only a mild effect
on the decoding capabilities of the design.

These results reinforce the findings of Schliepet al. (2003),
namely that probe selection with non-unique probes is cap-
able of accurately assessing the presence of small target sets
even when minimizing the cardinality of the probe set. Our
approach already surpasses optimization approaches to probe
selection (Rash and Gusfield, 2002), as we can cope with
multiple targets simultaneously present in a sample. This will
almost always be the case for real biological applications.

Experiments with a prototypical group separation imple-
mentation let us conjecture that enforcing the separability
between small groups will only add a small number of nucle-
otides while improving the decoding capabilities. We plan to
finish the implementation of the group separation algorithm
in the near future and to speed up our initial implementa-
tion. Especially, we believe that using the slave ILP within
a real branch-and-cut framework—i.e. separating violated
inequalities also from fractional solutions at each node of
the branch-and-bound tree—will reduce the computation time
considerably, making optimal group separation up to small
cardinalities viable for practical use.

The software will be made available to the community.
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