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ABSTRACT

Motivation: Genetic regulation of cellular processes is fre-
quently investigated using large-scale gene expression experi-
ments to observe changes in expression over time. This
temporal data poses a challenge to classical distance-based
clustering methods due to its horizontal dependencies along
the time-axis. We propose to use hidden Markov models
(HMMs) to explicity model these time-dependencies. The
HMMs are used in a mixture approach that we show to be
superior over clustering. Furthermore, mixtures are a more
realistic model of the biological reality, as an unambiguous
partitioning of genes into clusters of unique functional assign-
ment is impossible. Use of the mixture increases robustness
with respect to noise and allows an inference of groups at vary-
ing level of assignment ambiguity. A simple approach, partially
supervised learning, allows to benefit from prior biological
knowledge during the training. Our method allows simulta-
neous analysis of cyclic and non-cyclic genes and copes well
with noise and missing values.

Results: We demonstrate biological relevance by detection
of phase-specific groupings in HelLa time-course data. A
benchmark using simulated data, derived using assumptions
independent of those in our method, shows very favorable res-
ults compared to the baseline supplied by k-means and two
prior approaches implementing model-based clustering. The
results stress the benefits of incorporating prior knowledge,
whenever available.

Availability: A software package implementing our method is
freely available under the GNU general public license (GPL)
at http://ghmm.org/gql

Contact: schliep@molgen.mpg.de

Supplementary information: Supplemental material can be
found at http://algorithmics.molgen.mpg.de/ExpMix

1 INTRODUCTION

Life is a dynamic process over time. An understanding of
the cellular mechanisms, which govern its peculiarities on

*To whom correspondence should be addressed.

the level of genes and their regulation can only be gained
from experiments that reflect this time dependence. The final
goal intheanalysisof large-scal etime-course gene expression
datasets available is the inference of regulatory networks. A
number of methods have attempted to solve this problem dir-
ectly (Friedman et al., 2000; Chen et al., 1999). Because of
the large number of genes, their complex relationships and
the very large amount of noise in microarray measurements,
it has been a standard procedure for afirst analysisto identify
groups of genes with similar temporal regulatory patterns or
time-courses. The relevant approaches can be broadly cat-
egorized by the following criteria: their applicability to either
cyclic (Spellman et al., 1998; Whitfield et al., 2002), non-
cyclic (Bar-Joseph et al., 2002; Ramoni et al., 2002) or both
types of time-courses (Schliep et al., 2003), whether they
take dependencies along the time-axis into account like the
former methods or not (Eisen et al., 1998; Gasch et al., 2000;
Tavazoie et al., 1999; Rifkin and Kim, 2002), and, finally, if
the clustering is based on statistical models or some sort of
distance function. All these approaches compute a partition
of the time-courses, requiring assignment of each gene to a
single group. However, the biological reality does not agree
with this. Consider the MAP-kinase pathway as an example.
A stimulus such as serum induction after starvation activates
anumber of processes. On one hand, it leads to cell division
and proliferation but on the other hand space limiting factors
or high levels of serum may also induce stress genes. One
would expect MEKK and MAP kinase phosphatases to be
activated as well during the whole course of the experiment
as a conseguence of serum induction. G-proteins and early
response genes are only activated in the very beginning of the
serum induction while cyclins, like cyclin A and cyclin B1
are induced quite late in the experiment. Hence, one would
expect thetime-course of MEKK to beequally similar tothose
G-proteins and cyclins A and B.

To cope with thisreality, we model a set of gene expression
time-courses as a mixture model. Compared with clustering,
the use of mixtures increases robustness of the estimation
process in the presence of noise. The individual components
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are hidden Markov models (HMMs), which have been suc-
cessfully used in a wide range of applications (MacDonald
and Zucchini, 1997), mainly for their flexibility in encod-
ing ‘grammatical’ constraints of time-courses. In addition,
we found that their graphical structure benefits the analysis
process, as it affords a high degree of interactivity and
accessibility.

The estimation or learning algorithms used are only proven
to arrive at loca maxima. Owing to the complexity of the
problem a high degree of dependency on initial conditions
is to be expected. Typically, only unlabeled (no information
about the correct group assignment isknown) dataare used in
clustering. We propose to additionally use labeled data. That
the combination can be beneficial has been discovered first in
the context of learning classifiers. Infact, the decreasein clas-
sification error is exponential in the amount of unlabeled data
(Castelli and Cover, 1994). Sincethen anumber of approaches
were developed following the same general idea. Szummer
and Jaakkola (2002) propose two estimation procedures for
classifying text documents by constructing weighted graphs,
Blum and Chawla (2001) partition graphs by mincuts con-
trolled by labeled examples. Belkin and Niyogi (Belkin, 2003)
infer the (minimal) sub-manifold that contains the data from
the complete dataset and use the labeled samples for classi-
fication on it. Nigam et al. (2000) present a method based
on statistical models for text classification. Here, analogous
to our approach, the EM algorithm is extended to gain from
label ed exampleswhen inferring groupsin data. We show that
there is a large improvement in convergence to good local
optimaon typical data, even if only small amounts of labeled
data are supplied.

The potential benefit is particularly relevant in biological
applicationsas, generally speaking, theunderstanding of com-
plex biological systemsis till too limited to formulate very
detailed mathematical models. M ethodswhich havetheability
toinclude prior knowledge and thusintegrate more biological
factsshould outperformthosewhich donot. Thisintegrationis
feasible, astypically small amountsof high-quality annotation
regarding regulation or function of genes are available.

Our method allows simultaneous analysis of cyclic and
non-cyclic time-courses in a mixture modeling framework
using flexible graphical modelsbased on HMMs, which expli-
citly model horizontal dependencies, as mixture components
using a partially supervised |earning approach to obtain para-
meter estimates robustly and reproducibly. Background noise
isaccounted for in adedicated noise component, missing data
are flexibly and consistently handled.

2 METHODS

Our method is based on the well-established framework
of mixture modeling (McLachlan and Basford, 1988;
McLachlan and Peel, 2000) in which we employ HMMs
as simple, robust and flexible models for time-course data.
The combination of the two is novel—a clustering approach

based on the same class of HMMs has been described earlier
(Schliep et al., 2003). Also a novelty is the application of
a simple, nevertheless efficient, extension to the classical
Expectation-Maximization (EM) agorithm for estimating
mixture parameters from data, when high-quality annotation
for some genesisknown apriori. Lastly, our method includes
a robust decoding procedure, which alows to infer groups
of genesin time-course datasets, such that the assignment to
groups is unambiguous.

2.1 Mixturesof HMMs

We use HMMs [see Rabiner (1989) for an excellent intro-
duction] with continuous emissions governed by a normal
distribution in each state. The HMM topology—the num-
ber of states, the set of possible transitions—is essentialy a
linear chain (following Schliep et al. 2003), neglecting a pos-
sible transition from the last to the first state to accommodate
cyclic behavior. Note that we do not expect states to have a
semantic in terms of regulation. They simply reflect regions
of atime-course with similar levels of expression. There are
usually fewer states than time-points, as several similar suc-
cessive measurementswill be accounted for by the same state
by making use of its self-transition. It is important to point
out that our approach is not limited to such models but rather
accommodates arbitrary HMM topologies. As many of the
successful applicationsin time-course modeling (MacDonald
and Zucchini, 1997; Knab et al., 2003) show, more complex
models, capturing more of the ‘grammar’ observable in the
time-courses, which in the case of gene expression isimposed
by the regulatory mechanisms at work, should improve the
quality of the results greatly.

We combine K of such HMMs A1,...,Ag to a probabil-
ity density function (pdf) for a gene expression time-course
by use of a convex combination of the K compon-
ent probability density functions induced by the HMMs,
denoted p;(-,A;). The mixture pdf is parameterized by
® =[A1,..., Ak, (01,...,ak)] and defined as

K
pC1O) =Y a;jp;(,h)).

j=1

Astheformer isjust ausua mixture (McLachlan and Basford,
1988; McLachlan and Peel, 2000), the well-known theory
applies. The resulting likelihood function can be optimized
with the EM agorithm (Dempster et al., 1977; Wu, 1983;
Boyles, 1983; Bilmes, 1998) to compute maximum-likelihood
estimates for ®, or learning the mixture.

2.1.1 Partially supervised learning Analogous to Nigam
et al. (2000), we propose partially supervised learning as an
extension to the usual EM-based mixture estimation. This
allows the training to benefit from prior knowledge about
genes, e.g. when it is known that they are regulated by the
same regulatory pathway. The benefits of even very small

284



Gene expression time-courses using HMMs

guantities, e.g. <1% of all time-courses, of labels are large.
They improve the robustness of the estimation process with
respect to noise and the quality of thelocal optimum to which
the mixture likelihood convergesto during thelearning. Inthe
following, wewill argue why the modified EM algorithm till
converges in the case of partially supervised learning.

To apply the EM agorithm, one assumes the existence of
unobservable (or hidden) data Y = {y;} that indicates which
component has produced each O’ in the set of time-courses
0. Thus, we can formulate a complete-data |og-likelihood
functionlog L(®|0,7Y).

If we are given labeled time-courses, we do not have to
guess the corresponding y;. While thelabels do not reveal the
parameters of the mixture component, they however indicate
whether two labeled time-courses have been created by the
same or by distinct components. We denote the set of labeled
time-courses with O and the set of unlabeled oneswith Oy .
For atime-course O’ from O, we set the value of y; to its
component label /; and maintain this assignment throughout
the running time by setting P[1;]0'] = 1 for j = [; and
zero else. This can be thought of as conditioning the relevant
distributions and the likelihood on the known labels, yielding
a O-function [cf. Bilmes (1998); the ®' are the estimates for
the maximum likelihood in the ¢-th iteration], which splits
into two sums,

0(0,0") 1= Y logley, pi,(0'|1))]

0ie0;

K
+ > Y loglajp; (0" 1A )IPLIO', 0],

Oie0y j=1

and for which the usual local convergence result holds.

2.1.2 Decoding mixtures Even neglecting the high exper-
imental error rates, which obfuscate the assignment, biology
gives us no reason to believe that genes can be assigned
unambiguously to clusters due to the high complexity of
interacting networks. If we subscribe to the view that, ulti-
matively, clusters are formed based on functional categories,
the use of genes in multiple regulatory pathways negates
the possibility of a unique assignment for al genes. Mix-
ture estimation—anon-statistical analogonisfuzzy clustering
(Pedrycz, 1990)—circumventsthisdilemma, which caneasily
lead most clustering methods astray in the learning phase.
The simplest way of decoding a mixture, that is inferring
groups in the data, is to interpret the mixture components
as clusters and assign each time-course to the cluster which
maximizes the probability of the cluster given the time-
course O, P[A;|O]. However, a mixture encodes much more
information. Inspection of the discrete distribution d(0) =
{P[Xi|O1}1<i<k revealsthelevel of ambiguity in making the
assignment, which can be quantified easily and sensibly by
computing theentropy H[d(0)]. Choosing athreshold onthe

entropy yieldsagrouping of thedatainto K +1 groups; K cor-
responding to the K mixture components and one collecting
all time-courses, which exhibit an ambiguity level exceeding
the threshold and which remain unassigned for that reason.

Itisnot easily possible to automate the choice of threshold.
However, an interactive graphical user interface displaying
the time-courses and their assignment to clusters when the
user changes the threshold provides an effective way to settle
onavalue.

We deal with missing valuesin the following manner. Each
state of an HMM can either emit areal-valued variate accord-
ing toits Gaussian state emission pdf or with alow probability
equal to the proportion of missing values in al the time-
courses, a specia missing symbol. This circumvents the
need for replacing missing values with estimates, for example
through interpolation. The model swe use afford ahigh degree
of variability as far as the time-points of changes allowed by
the model are concerned. Hence, groups will typically con-
tain time-courses having the same qualitative behavior. The
time at which, e.g. an up-regulation occurs will often vary.
Synchronous subgroups of such clusters are found with the
Viterbi-decomposition introduced in Schliep et al. (2003).

The Graphical Query Language (GQL) software is based
on the freely available GHMM-library (GHMM, 2003,
http://ghmm.org) and implementsthe method described using
aportable graphical user interface.

2.2 Data

Itis still open to debate what constitutes an appropriate eval-
uation of analysis methods for gene-expression time-courses.
Regulation is not well understood and the annotation avail-
able is too sparse and too inconsistent to allow a large-scale
automated evaluation asit isroutinely donein machine learn-
ing. Real biological datausually providesanecdotal evidence;
none of the prior approaches provides a reasonably sized
biological dataset for benchmarking.

Wetested our approach on Hel acell-cycledataand resorted
to artificial datafor benchmarking. The assumptions made in
creating the artificial data were disjoint from those made by
any of the methods compared.

Whitfield We used published data from a time-course
experiment (Whitfieldetal., 2002), inwhich theauthorsmeas-
ured genome-wide gene expression of synchronized Hel a
cells. We used the raw data from doubly thymidine experi-
ment three as provided by the authors in the Supplementary
information. In this dataset, Hel a cells, which have been
arrested in S phase by a double thymidine block, were mea-
sured every hour from 0 to 46 h. For reasons of comparison,
we excluded clones showing missing values from further ana-
lysis. Furthermore, the data were pre-processed by extracting
all these genes with an absolute fold change of at least two in
at least one time point. This resulted in a dataset containing
2272 expression time courses. Additionally, we used alist of
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Fig. 1. Time courses of selected cell cycle regulators obtained from the biological literature.

Table 1. The simulated dataset SI Mconsists of atotal of 3500 time-courses of length 30 (equal step-width in [0, 27]) in six classes

Class Description Size Function

Cl Up-regulation 500 0.15-x — 0.7+ N(1,0.3)

Cc2 Noise 1000 0+ N(1,0.6)

C3 Down-regulation 500 —-03.-x—-03+N(1,0.3)

c4 Cyclic1 500 N(1,0.0) -sin[1.2- N(1,0.05) - x + 0.8- 27] + N(0,0.4)
C5 Cyclic1 100 N(1,0.0075) - sin[1.2- N(1,0.1) - x + 0.6 - 2] + N(0,0.5)
C6 Cyclicl 900 N(1,0.9) -sin[1.5- N(1,0.025) - x + 0.5 27] + N(0,0.5)

The time-courses were obtained by sampling from the respective class models. The normal distribution is denoted as N (i, o).

Table2. Theresultson SI Mfor k-meansclustering, CAGED (Ramoni et al.,
2002), Splines (Bar-Joseph et al., 2002) and HMM mixtures with no, 0.9%
(5 per class) and 1.7% (10 per class) labeled time-courses per class

Method Description Specificity (%) Sensitivity (%)

M1 k-means, Euclidean distance 85.55 71.87
M2 CAGED 41.00 99.70
M3 Splines 47.29 39.38
M4 HMM mixtures 93.00 79.14
M5 HMM mix., 0.9% labeled 96.40 96.90
M6 HMM Mix., 1.7% labeled 96.60 96.99

By comparing the known classes in SI Mwith the computed clustering for al pairs
of time-courses, we computed true and false positives as well as true and false negat-
ives, abbreviated TP, FP, TN and FN, respectively. True positive is defined as a pair
of time-courses with equal class that are assigned to the same cluster. To quantify the
performance, we computed the standard sensitivity, #TP/(#TP + #FN), and specificity,
H#TPI(HTP + #FP).

genes which have been described in literature to be regulated
dependent on the cell cycle [Table 2, Whitfield et al. (2002)].

Smulateddata Tofacilitate benchmarking and evaluation
we tried to design a method for creating simulated datasets,
which makes very mild assumptions about the nature of

the data but reflects the realities of microarray experiments.
Our proposed approach is independent from the underly-
ing assumptions and peculiarities of the statistical model in
our method, as it is independent from the assumptions in
other methods. We assume three broad categories of genes,
cell-cycleregulated, non-cell-cycleregul ated and unregul ated
genes. We choose the sine function as a ‘true’ model for the
first, linear functionsfor the second and const = O for the third
category (Table 1). Randomizationisperformed by modifying
theargument to afunction, changing phase and frequency, and
the resulting function value, modifying amplitude, shifting all
values and, finally, adding noise.

3 RESULTS

The method requires as input a collection of initial mod-
els. Given that the training procedure will only arrive at
local optima, one would expect alarge degree of dependence
on input. Surprisingly, random choices of linear component
models performed well. We used & models of size within a
prescribed range and default emission parameters © = 0O,
o = 0.1. Subsequently, we computed a random k-partition of
the dataset and estimated each of the models with one group
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Fig. 2. A group obtained by computing a mixture model using
9 labeled and 2263 unlabeled time-courses from the Whitfield data-
set (top). It containsfive of the labeled time-courses. The group was
decomposed, using the Viterbi decomposition, into three subgroups,
corresponding to synchronous genes, resulting in a first subgroup
containing mainly G2 genes (phase 1), the second having G, aswell
as G,/M genes (phase 2) and the third having mostly G,/M genes
(phase 3, bottom).

of the partition using the Baum—\Welch algorithm (Rabiner,
1989). We avoided overfitting by limiting the number of steps.
If labeled data were given, only the labeled data were used
to estimate models, which had labeled data assigned; the

LogRatio

Timepoints

Fig. 3. Another group containing cell cycle related genes obtained
by computing a mixture model using 9 labeled and 2263 unlabeled
time-courses from the Whitfield dataset. This group contains only
genes belonging to phases G1/S and S, four of which were labeled
input.

unlabeled data were used as described above for the remain-
ing models. We added a designated noise-component, which
issimply aone-state model with N (0, o )-emissionsfor alarge
value of o, exempted from training. This mixture component
that accounts for time-courses, which do not fit any of the
other mixture components well avoids unnecessary ‘broad-
ening' of the other components. As we use a default mixture
model, we can apply standard criteriafor model selection such
as the Bayesian information criterion (BIC) (Hastie et al.,
2001) to decide between different numbers of components.
We repeated the experiments 20 times for varying numbers of
k and used BIC to choose abest k. Best performanceis shown.
Toallow comparisons, acluster assignment wasobtained from
the mixture we estimated using an entropy cutoff value of

log(k).

Whitfield Cell cycle regulators as, for example, different
cyclins, E2F, PCNA and HDACS3 are known to be active in
different stagesinthecell cycle. Furthermore, they haveareg-
ulatory impact on each other, either directly (as E2F1 acting
on CyclinD) orindirectly (asE2F1 hasimpact on p27 and vice
versa via CDK2-Cyclin A). Thus, one expects to find these
patterns of regulatory activity in the underlying gene expres-
sion dataset. Cyclin B and Cyclin A both act while being
bound to CDC2 during the transition from G, to M phase. In
fact, asshown in Figure 1 they are coordinately regulated and
there is a clear phase shift compared to E2F1, e.g. which is
activein the transition of the G; phaseto Sphase. CyclinFis
known to have a similar sequence as Cyclins A and B but the
function islargely unknown (Kraus et al., 1994). In Figure 1
one can seethat it is apparently regulated temporarily equally
as Cyclins A and B. CDC2 is present twice on the array, and
as shown here, the expression profile are aimost equal. On
the other hand, E2F1 regulates p27, which is demonstrated
by a clear phase shift in the time course. PCNA is needed
for the initiation of S phase as well and is regulated clearly
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Fig. 4. Cluster assignment of time-courses in SI M the first column shows clusters C1-C6 from S| Mas blocks of different gray levels,
the second to the seventh column shows the cluster assignments obtained by methods M 1-M6 (see Table 2 for a definition). This alows a
qualitative assessment of errors made. A good clustering should display solid blocks (see the Web supplement for a color version of this

figure).

in G1/S phase. HDAC3 which is needed to permit the access
to the DNA and thus alowing transcriptional regulation is
expressed during G1/S transition as well.

We used a collection of 35 random linear 24-state models.
We used the five Go/M phase genes described above as a seed
for one cluster and four genes of the G1/S phase for a second
one. Decoding the mixture resulted in two groups contain-
ing the labeled time-courses of size 91 and 14, respectively
(Figs 2 and 3). We computed a Viterbi-decomposition of the
larger group. The first subgroup contained 26 genes known
to be G, and one G,/M, the second 11 G, and 19 G,/M, the
third 31 G,/M, 2 M/G; and 1 G41/S. The second group ashown
in Figure 3, contained 12 G1/S and 2 S-phase genes. Both
CDC2 representatives (Fig. 1) are found in the same com-
ponent (phase 1, Fig. 2). Furthermore, cyclin A (phase 2),
cyclin B (phase 3) are assigned to different, dightly phase
shifted components compared with the one in which CDC2
is captured. Moreover, all time-courses that are assigned to
the different phases of our G2, Go/M phase cluster are known
to be cell cycle regulated in their respective phase (Whitfield
et al., 2002). The same holds for the G1/S, S phase cluster.
This can be followed up in detail in our Web supplement.
Thus, the modest amount of prior information used resulted
in highly specific (sub-)groups of synchronously expressed
genes.

Smulated data Most remarkable is the very good per-
formance of the simplest method, k-means clustering using
Euclidean distance, which is not tailored to time-course data
on the SI Mdataset. As shown in Table 2, two of the more
involved methods, Caged (Ramoni et al., 2002) and the
Spline-based clustering by Bar-Joseph et al. (2002) only reach
a specificity of <50%. The main error made by Caged in
deciding on too few clusters (this cannot be controlled by the
user), which leads to merging of several classes (C1 and C2,

respectively C3-C6, cf. Fig. 4) into one cluster. The HMM
mixture perform quite well, achieving a high degree of over
90% specificity and over 75% sensitivity. The tests also show
very clearly theimpressive effect of partialy supervisedlearn-
ing. It sufficesto havelabelsfor 30 or <1% of all time-courses
(cf. M5 in Table 2), to obtain a specificity and sensitivity
exceeding 95%. More labels do not yield further significant
improvements.

4 DISCUSSION

We present arobust, simple and efficient approach to analyze
gene expression time-course data using a mixture of HMMs,
The method can easily make use of prior knowledge about
time-courses due to a partially supervised training proced-
ure, which greatly increases robustness (see Supplementary
information) and the quality of the local optima found. Sim-
ultaneous analysis of cyclic and non-cyclic time-courses is
possible and neither missing values nor readlistic levels of
noise pose a serious problem. Besides their computational
advantages (for experiments demonstrating a higher robust-
nessto noise compared with clustering see the Supplementary
information) and their better fit to biological reality, mix-
tures alow a quantification of the assignment uncertainty.
Moreover, aninteractive exploration of assignmentsat various
levels of uncertainty is supported.

We demonstrate biological relevance by analysisof aHel a
time-course dataset for which we infer synchronous groups
specific to cell cycle phases. A comparison on simulated data
created using mild assumptions distinct from ours and those
implicit to other methods, yielded favorable results. Our flex-
ible framework combined with an effective graphical user
interface implemented in GQL supportsinteractive, explorat-
ory knowledge discovery making full use of biological expert
knowledge.
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